Arrays and Array Lists -

Should array indices start at O or 12

My comproinise of 0.5 was rejected,
without, I thought, proper consideration.
—S$. Kelly-Bootle

Chapter Goals
¢ One-dimensional arrays o Two-dimensional arrays
o The ArrayList<E> class o The List<E> interface

ONE-DIMENSIONAL ARRAYS

An array is a data structure used to implement a list object, where the elements in the

list are of the same type; for example, a class list of 25 test scores, a membership list of

1C0 names, or a store inventory of 500 items.

.. For an array of N elements in Java, index values (“subscripts™) go from 0 to N — 1.
Individual elements are accessed as follows: If arr is the name of the array, the elements

- arearr[0],arr[1],..., arr (N-1]. If a negative subscript is used, or a subscript £ where

k > N, an ArrayIndexCutOfBoundsException is thrown.

Initialization

In Java, an array is an object; therefore, the keyword new must be used in its creation.
The size of an array remains fixed once it has been created. As with sString objects,
however, an array reference may be reassigned to a new array of a different size.

- Example
All of the following are equivalent. Each creates an array of 25 double values and
. assigns the reference data to this array.

1

1. double[] data = new double[25];

2. double data[] = new deuble[25];

1

3. double[] data;
data = new double[25];

A subsequent statement like
233

234 Chapter 6 Arrays and Array Lists

data = new double(40];

reassigns data to a new array of length 40. The memory allocated for the previous
data array is recycled by Java’s automatic garbage collection system.

When arrays are declared, the elements are automatically initialized to zero for the
primitive numeric data types (int and double), to false for boolean variables, or to
null for object references.

It is possible to declare several arrays in a single statement. For example,

int[] intlistl, intList2; //declares inmtListl and intList2 to
//contain int values
int[] arri = new int[15], arr2 = new int([30]; //reseives 15 slots
' //for arrl, 30 for arr2

INITIALIZER LIST

Small arrays whose values are known can be declared with an initializer list. For exam-
ple, instead of writing

int[] coins = new int[4];
coins[0] = 1;
coins[1] = 5;
coins [2] 10;
coins[3] 28;

you can write
int[] coins = {1, 5, 10, 25};

This construction is the one case where new is not required to create an array.

Length of Array

A Java array has a final public instance variable (L.e., a constant), length, which can be f |
accessed when you need the number of elements in the array. For example, -

String[] names = new String[25];
< code to initialize names >

//loop to process all names in array
for (imt i = 0; i < names.length; i++)
< process names >

NOTE

1. The array subscripts go from 0 to names . length-1; therefore, the test on 1 in §
the for loop must be strictly less than neames . length. :
2. length is not a method and therefore is not followed by parentheses. Contrast |
this with String objects, where length is a method and must be followed by &
parentheses, For example, ;

1

String s = "Confusing syntax!";
int size = s.length{); //assigns 17 to size

S -

One-Dimensional Arrays 235

Traversing an Array

Use a for-each loop whenever you need access 1o every element in an array without
replacing or removing any elements. Use a for loop in all other cases: to access the.

- index of any element, to replace or remove elements, or to access just some of the
elements. ' '

Do not use a for-each
loop to remove or
replace elements of
an array.

Note that if you have an array of objects (not primitive types), you can use the for-
cach loop and mutator methods of the object to modify the fields of any instance (see
the shuff1e412 method on p. 239).

Example 1

/#* @return the number of even integers in array arr of integers */
public static int countEven(int[] arr)
{

int count = 0;

for (int num : arr)

if (num % 2 == 0) //num is even
count++;
return count;

T
- Example 2

/** Change each even-indexed element in array arr to Q.

* Precondition: arr contains integers.

* Postcondition: arr[0], arr[2], arr[4], ... have value 0.
*/
public static void changeEven(int[] arr)

c :

for (int i = 0; i < arr.length; i +=.2)
arr[i] 0;

3

Arrays as Parameters | §

Since arrays are treated as objects, passing an array as a parameter means passing its
object reference. No copy is made of the array. Thus, the elements of the actual array
- can be accessed—and modified.

. Example 1
Array elements accessed but not modified:

/*% @return index of smallest element in array arr of integers */
public static int findMin (int[] arx)

s int min = arr[0];
E int minIndex = 0;
for {int i = 1; i < arr.length; i++)
if {arr(i} < min) //found a smaller element
{
min = arx[i];
minIndex = i;
}
return minIndex;

:_-: }

To call this method (in the same class that it’s defined):

236 Chapter6 Arrays and Array Lists

int[] array;

< code to initialize array >

int min = findMin(array);
Example 2

Array elements modified:

/*x Add 38 to each element of array b. */

public static void changeArray(intl] b) f‘ 5 (
{ 1
for (int i = 0; i < b.length; i++)]
blil += 3; |-
} ‘ ‘37
. : T/
~ To call this method (in the same class): 3 i
int[] list = {1, 2, 3, 4};
changeArray(list);]
System.out.print("The changed list iz "); g
for (int num : list) i
System.out.print(num + " "); 3
. J‘ ‘:
The output produced is 3
The changed list is 4 5 6 7
1s:po: Look at the memory slots to see how this happens: 1
 the contents of the . 4
apray. ool Before the method call: At the start of the method call: i
' list list ..
—4—>|1f2|314 4—|1l2]3fa] . ‘.
b |
= n
: or
Just before exiting the method: _ After exiting the method: P 3 Ey
list list b
—+4—>|4]8|6|7 —~—>|4|5|6]|7 }
oy .
Example 3 ;'
Contrast the changeArray method with the following attempt to modify one array 1
element: 3 To
/*% Add 3 to an- element. %/ .'! '3
public static void changeElement(int n) ' '
{n+=3;} '
Here is some code that invokes this method: -

One-Dimensional Arrays 237

int[] list = {1, 2, 3, 4};
System.cut.print("Original array: ");
for (int num : list)
System.out.print(num + " ");
changeElement (1ist [0]);
System.out.print ("\nModified array: ");
for (int num : list)
System.out.print(oum + " ");

Contrary to the programmer’s expectation, the output is
Y prog P

Original array: 1 2 3 4
Modified array: 1 2 3 4

A look at the memory slots shows why the list remains unchanged.

Before the method call: At the start of the method call:
list list
—+—»| 12134 > 1(2([3}4
n
i
Just before exiting the method: After exiting the method:
list list
——|1]12(|3]|4 —+——=(1(2]|13]| 4
n

4]

The point of this is that primitive types—including single array elements of type int
or double—are passed by value. A copy is made of the actual parameter, and the copy
is erased on exiting the method.

Example 4

/*% Swap arr(i] and arr[j] in array arr. */
public static void swap(int[] arr, int i, int j)

{
int temp = arr[il;
arr{i] = arr[j];
arr[ji = temp;

}

To call the swap method:

int[] list = {1, 2, 3, 4};
swap(list, 0, 3);
System.out.print("The changed 1ist is: "};
for (int num : list)
System.out.print(num + " ");

The output shows that the program worked as intended:

The changed list is: 4 2 3 1

238 Chapter 6 Arrays and Array Lists

Example 5

/%% @return array containing NUM_ELEMENTS integers read from the key!
* Precondition: Array undefined.
Postcondition: Array contains NUM_ELEMENTS integers read from

* the keyboard.
*/

public int{] getintegers()

{

int [} arr = new int [NUM_ELEMENTS];
for {int i = 0; i < arr.length; i++)

{
System.out.println("Enter integer: "); .
arr[i] = I0.readInt(}; //read user input
}
return arr;
}
To call this method:

int[] 1list = getIntegers();

Array Variables in a Class

Consider a simple Deck class in which a deck of cards is represented by the intege
to 51,)

public class Deck
{
private int[] deck;
public static final int NUMCARDS = 52;

/**% constructor */
public Deck()
{ 4
deck = new int [NUMCARDS];
for (imt i = 0; i < NUMCARDS; i++)
deck[i] = i;
}

/*% Write contents of Deck. */
public void writeDeck()

{
for {(int card : deck)
System.out.print(card + " ");
‘System.out.println();
System.out.println();
¥

/%x Swap arr[i] and arr(j] in array arr. */
private void swap(int[] arr, int i, int j)
{

int temp = arr[i};

arr[i] = arrijl;

arr[j]l = temp;

One-Dimensional Arrays 239

/#*x Shuffle Deck: Generate a random permutation by picking a
* random card from those remaining and putting it in the

* next slot, starting from the right. Egi\
*/ \

public void shuffle()
{
int index;
for (int i = NUMCARDS - 1; 1 > 0; i--)
{
//generate an int from 0 to i
index = (int) (Math.random() #* (i + 1));
swap(deck, i, index);

Here is a simple driver class that tests the Deck class:

public class DeckMain

{
public static void main(String args[])
{
Deck d = new Deck();
d.shuffle();
d.writeDeck();
1
}
NOTE

There is no evidence of the array that holds the deck of cards—deck is a private instance
variable and is therefore invisible to clients of the Deck class.

Array of Class Objects

Suppose a large card tournament needs to keep track of many decks. The code to do
this could be implemented with an array of Deck:

public class ManyDecks

{
private Deck[] allDecks;

public static final int NUMDECKS = 500;

/*% constructor %/
public ManyDecks()

{
allDecks = new Deck [NUMDECKS]; -
for {(int i = 0; i < NUMDECKS; i++)

allbDecks[i] = new Deck{);

}

/*% Shuffle the Decks. #/
public void shuffileAll()
{
for (Deck d : allDecks)
d.shuffle();

240 Chapteré Arrays and Array Lists

/** Write contents of all the Decks. */
Jpublic void printDecks()
{
for (Deck d : allDecks)
d.writeDeck();

NOTE
1. The statement

allDecks = new Deck [NUMDECKS] ;

Creates an array, allDecks, of 500 Deck objects. The default initialization for
these Deck objects is null. In order to initialize them with actual decks, the
Deck constructor must be called for each array element. This is achieved with
the for loop of the Manybecks constructor,

2. In the shuffleall method, it’s OK to use a for-each loop to modify each deck
in the array with the mutator method shuffle.

Analyzing Array Algorithms

Example 1 .
Discuss the efficiency of the countlNegs method below. What are the best and worst
case configurations of the data?

/%% Precondition; arr[0],...,arr[arr.length-1] contain integers.
* @return the number of negative values in arr
*/
public static int countNegs(int[] arr)
{
int count = 0:
for (int num : arr)
if (gum < 0)
count++;
return count;

}

Solution:

This algorithm sequentially examines each element in the array. In the best case, there
are no negative elements, and count++ is never executed. In the worst case, all the
elements are negative, and count++ is executed in each pass of the for loop.

Example 2

The code fragment below inserts a value, num, into its correct position in a sorted
array of integers. Discuss the efficiency of the algorithm.

/%% Precondition:

- arr[0],...,arr[n-1] contain integers sorted in increasing order.
* - n < arr.length.
* Postcondition: num has been inserted in its correct position.
*ef
{

//find insertion point
int i = 0;
while (i < n && num > arr[i])
it++;
//1if necessary, move elements arr[i}...arr[n-1] up 1 slot
for (int j =m; j >= i + 1; j--)
arr[j] = arr[j-1];
//insert num irn i-th slot and update n
arr[i] = num;
n++;

3

Solution:
In the best case, num is greater than all the elements in the array: Because it gets inserted
‘at the end of the list, no elements must be moved to create a slot for it. The worst case

*has nun less than all the elements in the array. In this case, nun must be inserted in the

first slot, arr [01, and every element in the array must be moved up one position to
‘create a slot. , _ :

_ This algorithm illustrates a disadvantage of arrays: Insertion and deletion of an ele-
‘hent in an ordered list is inefficient, since, in the worst case, it may involve moving all
‘the elements in the list.

'-‘:;ARRAY LISTS

.r____ e

"An ArrayList provides an alternative way of storing a list of objects and has the fol-
-lowing advantages over an array:

¢ An ArrayList shrinks and grows as needed in a program, whereas an array has
a fixed length that is set when the array is created.

. In an ArrayList 1ist, the last slot is always 1ist.size()-1, whereas in a par-
tlally filled array, you, the programmer, must keep track of the last slot currently
in use.

“e For an ArrayList, you can do insertion or deletion with just a single statement.
Any shifting of elements is handled automatically. Tn an array, however, inser-
tion or deletion requires you to write the code that shifts the elements.

T

'f:;?l'_he Collections API '

““The ArrayList class is in the Collections API (Apphcauon Programming Interface),
“which is a library provided by Java. Most of the APT is in java.util. This library gives
_, the programmer access to prepackaged data structures and the methods to manipulate
“them. The implementations of these container classes are invisible and should not be
Of concern to the programmer. The code works. And it is reusable.

" All of the collections classes, including ArrayList, have the following features in
““tommon:

Array Lists 241

242 Chapter 6 Arrays and Array Lisis

o They are designed to be both memory and run-time efficient.

e They provide methods for insertion and removal of items (i.e., they can grow

and shrink).

» They provide for iteration over the entire collection.

The Collections Hierarchy

Inheritance is a defining feature of the Collections API. The interfaces that are used
to manipulate the collections specify the operations that must be defined for any con-
tainer class that implements that interface.

The diagram below shows that the ArrayList class implements the List interface,

List
<<interface>>

A

/
Fi

ArraylList

Collections and Generics

The collections classes are generic, with type parameters. Thus, List<E> and
ArrayList<E> contain elements of type E.

When a generic class is declared, the type parameter is replaced by an actual object
type. For example,

private ArrayList<Clown> clowns;

NOTE

1. The clowns list must contain only Clown objects. An attempt to add an Acrobat
to the list, for example, will cause a compile-time error.

2. Since the type of objects in a generic class is restricted, the elements can be
accessed without casting,

3. All of the type information in a program with generic classes is examined at
compile time. After compilation the type information is erased. This feature
of generic classes is known as erasure. During execution of the program, any
attempt at incorrect casting will lead to a ClassCastException. -

Auto-Boxing and -Unboxing

There are no primitive types in collections classes. An ArrayList must contain objects,
not types like double and int. Numbers must therefore be boxed—placed in wrapper
classes like Integer and Double—before insertion into an ArrayList.

Anto-boxing is the automatic wrapping of primitive types in their wrapper classes.

To retrieve the numerical value of an Integer (or Double) stored in an ArrayList,
the intValue() (or doubleValue()) method must be invoked (unwrapping). Auto-
unboxing is the automatic conversion of a wrapper class to its corresponding prim-
itive type. This means that you don’t need to explicitly call the intvalue() or

The List<E> Interface 243

doubleValue() methods. Be aware that if a program tries to auto-unbog null, the
method will throw a NullPointerException. .

Note that while auto-boxing and -unboxing cut down on code clutter, these oper-
ations must still be performed behind the scenes, leading to decreased run-time effi-
ciency. It is much more efficient to assign and access primitive types in an array than
an ArrayList. You should therefore consider using an array for a program that manip-
ulates sequences of numbers and does not need to use objects.

NOTE

Auto-boxing and -unboxing is a feature in Java 5.0 and later versions and will not be
_tested on the AP exam. It is OK, however, to use this convenient feature in code that
" you write in the free-response questions.

i jare indexed, with 0 being the index of the first element.
4 Alist allows you to

"o Access an element at any position in the list using its integer index.
_# Insert an element anywhere in the list.

@ Iterate over all elements using ListIterator or Iterator (not in the AP subset).

The Methods of List<E>

ré are the methods you should know.

‘Appends obj to-the end of the list. Always returns true. If the specified element is not '
of type E, throws a ClassCastException.

set(int index, E element)

eplaces item at specified index in the list with specified element. Returns the element
at was previously at index. Throws a ClassCastException if the specified element
not of type E.

244 Chapter 6 Arays and Array Lists

'Optional topic:

void add(int index, E element)

Inserts element at specified index. Elements from position index and higher have 1
added to their indices. Size of list is incremented by 1.

IE remove (int indexﬂ

Removes and returns the element at the specified index. Elements to the right of
position index have 1 subtracted from their indices. Size of list is decreased by 1.

[Iterator<E> iterator()

Returns an iterator over the elements in the list, in proper sequence, starting at the
first element.

The ArrayList<E> Class

T'his is an array implementation of the List<E> interface. The main difference between
an array and an ArrayList is that an ArrayList is resizable during run time, whereas
an array has a fixed size at construction.

Shifting of elements, if any, caused by insertion or deletion, is handled automatically
by ArrayList, Operations to insert or delete at the end of the list are very efficient. Be
aware, however, that at some point there will be a resizing; but, on average, over time,
an insertion at the end of the list is a single, quick operation. In general, insertion or
deletion in the middle of an ArrayList requires elements to be shifted to accommodate
a new element (add), or to close a “hole” (remove).

THE METHODS OF ArrayList<E>

In addition to the two add methods, and size, get, set, and remove, you must know
the following constructor.

ArrayList ()

Constructs an empty list.

NOTE

Each method above that has an index parameter—add, get, remove, and set—throws
an IndexQut0fBoundsException if index is out of range. For get, remove, and set,
index is out of range if

index < 0]| index >= size()

For add, however, it is OK to add an element at the end of the list. Therefore index is
out of range if

index < Q || index > size()

The List<E> Interface 245

 Using ArrayList<E>

Example 1

‘//Create an ArrayList containing 0 1 4 9. ,
List<Integer> list = new Arraylist<Integer>(}; //An ArraylList is-a List
“for (int i = 0; 1 < 4; i++)
© - list.add(i * i); //example of awto-boxing

//i*i wrapped in an Integer before insertion
Integer intOb = list.get(2); //assigns Integer with value 4 to intOb.
L //Leaves list unchanged.
int n = list.get(3); //example of autc-unboxing _
s //Integer is retrieved and converted to int
L //n contains 9
;Integer x = list.set(3, 5); //list is 01 4 5
‘ //% contains Integer with value 9

:£,= list.remove(2); //list is 01 5
h'; //x contains Integer with value 4
en © list.add(1, 7); //list is 0 7 1 5
eag list.add(2, 8); //list is 0 7815
Example 2

*//Traversing an ArraylList of Integer.

//Print the elements of 1ist, one per line.

for (Integer mum : list)
System.out.println(num);

: Exai‘nple 3

/#x Precondition: List list is an ArrayList that contains Integer
vk values sorted in increasing order.
.* Postcondition: value inserted in its correct position in list.
%/
ﬁﬁblic static void insert(List<Integer> list, Integer value)
o ‘
' int index = 0;
//find insertion point
vhile {index < list.size() &%
value.compareTo{list.get (index)) > 0)
index++;
//insert value
list.add(index, value);

NOTE

Suppose value is larger than all the elements in 1ist. Then the insert method will
:thr_ow an IndexOut0fBoundsException if the first part of the test is omitted, namely
Index < list.size().

246 Chapter 6 Arrays and Array Lists

Example 4
- /#* Qreturn an ArrayList of random integers from 0 to 100 */
public static List<Integer> getRandomIntList()
{

List<Integer> list = new ArrayList<Integer>();
System.out.print("How many integers? ");

int length = I0.readInt(); //read user inmput
for (int i = 0; 1 < length; it++)
{

int newNum = {(int) (Math.random{) * 101);
list.add{new Integer (newlNum));
}

return list;

}
NOTE
1. The variable 1ist is declared to be of type List<Integer> (the interface) but is
instantiated as type ArrayList<Integer> (the implementation).
2. The add method in getRandonIntList is the List method thar appends its
parameter to the end of the list.
Example 5

/*% Swap two values in list, indexed at i and j. */
public static void swap(List<E> list, imt i, int j)

{
E temp = list.get(i);
list.set{i, list.get(j));
list.set{(j, temp);
}
Example 6

/*% Print all negatives in list a.
* Precondition: a contains Integer values.

*/

public static void printNegs(List<Integer> a)

{
System.out.println("The negative values in the list are: ");
for (Integer i : a) ‘

if (i.intValue() < 0)
System.out.println(i);
}
Example 7

/#* Change every even-indexed element of strList to the empty string.
* Precondition: strlist contains String values. '
*/
public static void changeEvenToEmpty(List<String> strList)
{
boolean even = true;
int index = 0;
vhile {(index < strlList.size())

{
if (even)
strList.set(index, "");
index++;
even = leven;
}

. Coltections and lterators 247

JONS AND ITERATORS

| GoLLec

S P S A vb‘ptional topic

et e v i id

- " Definition of an Iterator
An iterator is an object whose sole purpose is to traverse a collection, one element

at a time. During iteration, the iterator object maintains a current position in the
collection, and is the controlling object in manipulating the elements of the collection.

The Iterator<E> Interface

The package java.util provides a generic interface, Iterator<E>, whose methods are
hasNext, next, and remove. The Java Collections API allows iteration over each of its

collections classes.

THE METHODS OF Tterator<E>

| boolean hasNext(Tl

Returns true if there’s at least one more element to be examined, false otherwise.

Returns the next element in the iteration. If no elements remain, the method throws a
NoSuchElementException.

l void remove () |

Deletes from the collection the last element that was returned by next. This method
" can be called only once per call to next. It throws an I1legalStateException if the
* next method has not yet been called, or if the remove method has already been called
- after the last call to next.

Using a Generic lterator

- Toiterate over a parameterized collection, you must use a parameterized iterator whose
© parameter 1s the same type. -

Example 1

List<String> list = new ArrayList<String>();

< code to inttialize list with strings>

//Print strings in iist, one per line.

Iterator<String> itr = list.iterator();

while {(itr.hasNext()) '
System.out.println(itr.next(});

- .NOTE
ST Only classes that allow iteration can use the for-each loop. This is because the

loop operates by using an iterator. Thus, the loop in the above example is
equivalent to

248 Chapter8 Arrays and Array Lists

.(boﬂﬁn“?d) for (String str : list) //no iterator in sight!
System.out.println{str);

2. Recall, however, that a for-each loop cannot be used to remove elements from
the list. The easiest way to “remove all occurrences of ...” from an ArrayList
1S to use an iterator.

Example 2

/*% Remove all 2-character strings from strlist.
% Precondition: strList initialized with String objects.
*/
public static void removeTwos(List<String> strList)
{
Iterator<String> itr = strlist.iterator();
while (itr.hasNext(})
if (itr.next().length() == 2)
itr.remove(};

} .
Example 3

/#* Assume a list of integer strings.
#* Remove all occurrences of "6" from the list.
*/
Tterator<String> itr = list.iterator(); 1
wvhile (itr.hasVext()) :

{
String num = itr.next(); |
if (num.equals("6")) E
{ ;
itr.remove(); T
System.out.printin(list); ,
}
}

If the original listis 2 6 6 3 5 6 the output will be ‘;

(2, 6, 3, 5, 61
f2, 3, 6, 6]
[2, 3, 5]

Example 4

/#* Illustrate NoSuchElementException. */

Iterator<SomeType> itr = list.iterator();

while (true) _
System.out.printin(itr.next());

The list elements will be printed, one per line. Then an attempt will be made to move
past the end of the list, causing a NoSuchElementException to be thrown. The loop
can be corrected by replacing true with itr.hasNext ().

Two-Dimensional Arrays 249

Example 5 : _(wn_ti;zﬁ_ed)

“/** Illustrate IllegalS3tateException. #/
'Iterator<SomeType> itr = list.iterator();
SomeType ob = itr.next();

itr.remove();

itr.remove()};

Fvery remove call must be preceded by a next. The second itr.remove() statement
will therefore cause an I1legalStateException to be thrown.

NOTE

: In‘a."given program, the declaration

Tterator<SomeType> itr = list.iterator(};

) must be made every time you need to initialize the iterator to the beginning of the list.
-. Example &

/#* Remove all negatives from intList.
"% Precondition: intList contains Integer objects.
Y/
publlc static void removeNegs (L:Lst<Integer> intList)
Iterator<Integer> itr = intlist.iteratoxr();
- while {itr.hasNext())
if (itr.mext().intValue() < 0)
itr.remove();

NQTE

Every call to .
Temove must be
preceded by next.

- 1. In Example 6 on p. 246 a for-each loop is used because each element is accessed
without changing the list. An iterator operates unseen in the background

Contrast this with Example 6 above, where the list is changed by removing
elements. Here you cannot use a for-each loop.
2 To test for a negative value, you could use

if (itr.next{) < 0)

because of auto-unboxing.
- 3. Use a for-each loop for accessing and modifying objects in a list. Use an iterator
for removal of objects.

lﬂi‘&’t‘ - i T P

TWO, DIMENSIONAL ARRAYS

A two#dimensional array (matrix) is often the data structure of choice for objects like
bOI.ard games, tables of values, theater seats, and mazes.
Look at the following 3 X 4 matrix:

Do N
W U O
N R GO
ca O~

250 Chapter 8 Arrays and Array Lists

If mat is the matrix variable, the row subscripts go from 0 to 2-and the column sub-
scripts go from 0 to 3. The element mat [1] [2] is 4, whereas mat [0] {2] and mat [2] (3]
are both 8. As with one-dimensional arrays, if the subscripts are out of range, an
ArrayIndexOut0fBoundsException is thrown.

Declarations
Each of the following declares a two-dimensional array:

int[1[1 table; //table can reference a 2-D array of integers
//table is currently a null reference

double[] [] matrix = new double[3]1{4]; //matrix references a2 3 x 4
//array of real numbers.
//Each element has value 0.0

String[l {1 strs = new Stringl2] [5}; //strs references a 2 x 6
//array of String objects.
//Each element is null

An initializer list can be used to specify a two-dimensional array:

int[1[] mat = { {3, 4, &}, //row O
{6, 7, 8+ }; //row 1
This defines a 2 x 3 rectangular array (i.e., one in which each row has the same number
of elements).
The initializer list is a list of lists in which each inside list represents a row of the
matrix.

x Matrix as Array of Row Arrays

A matrix is implemented as an array of rows, where each row is a one-dimensional
array of elements. Suppose mat is the 3 x 4 matrix

2687
1540
9328
Then mat is an array of three arrays:
mat [0] contains {2, 6, 8, 7} <
mat [1] contains {1, 5, 4, 0} h
mat [2] contains {9, 3, 2, 8} :

The quantity mat . length represents the number of rows. In this case it equals 3 be-

" cause there are three row-arrays in mat. For any given row k, where 0 <k < mat.length,

the quantity mat [k].length represents the number of elements in that row, namely

the number of columns. (Java allows a variable number of elements in each row.

Since these “jagged arrays” are not part of the AP Java subset, you can assume that

mat [k] . length is the same for all rows k of the matrix, i.e., that the matrix is rectan-
gular.) :

Two-Dimensional Arrays 251

Processing a Two-Dimensional Array §

There are three common ways to traverse a two-dimensional array:

e row-column (for accessing elements, modifying elements that are class objects,
or replacing elements)

e for-each loop (for accessing elements or modifying elements that are class objects,
but no replacement)

e row-by-row array processing (for accessing, modifying, or replacement)

Example 1

Find the sum of all elements in a matrix mat. Here is a row-column traversal.

/%% Precondition: mat is initialized with integer values. %/
int sum = 0;
for (int r = 0; r < mat.length; r++)
for (int ¢ = 0; ¢ < mat[r].length; c++)
sum += mat [r] [c];

NOTE

1. mat [r] [c] represents the rth row and the cth column.

2. Rows are numbered from 0'to mat . length-1, and columns are numbered from
0 tomat [r].1length-1. Any index that is outside these bounds will generate an
ArrayIndexOutCfBoundsException.

Since elements are not being replaced, nested for-each loops can be used instead:

for {int[] row : mat) //for each row array in mat
for (int element : row) //for each element in this row
sum += element;

NOTE

Starting in 2015, you will need to know how to use a nested for-each traversal. You
will also need to know how to process a matrix as shown below, using the third type of &\
traversal, row-by-row array processing. This traversal assumes access to a method that
processes an array. So, continuing with the example to find the sum of all elements in
- mat: In the class where mat is defined, suppose you have the method sumazray.

/#*% @return the sum of integers in arr */
public int sumArray(int[] arr)
{ /* implementation not shown */ }

You could use this method to sum all the elements in mat as follows:

int sum = Q;
for (int row = 0; row < mat.length; row++) //for each row in mat,
sum += sumhrray (mat [row]); //add that row’s total to sum

Note how, since mat [row] is an array of int for 0 < row < mat.length, you can use
the sumArray method for each row in mat.

252 Chapter 8 Arrays and Array Lists

Example 2
Add 10 to each element in row 2 of matrix mat.

for (int ¢ = 0; ¢ < mat[2].length; c++)
mat [2] [¢] += 10;

NOTE

1. In the for loop, you can use ¢ < mat [k].length, where 0 <k < mat. length,
since each row has the same number of elements.

2. You cannot use a for-each loop here because elements are being replaced.

3. You can, however, use row-by-row array processing. Suppose you have method
addTen shown below.

/*% Add 10 to each int in arr */
public void addTen(int{] arx)
{

for (int i = 0; i < arr.length; i++)
arr[i] += 10;

}

You could add 10 to each element in row 2 with the single statement

i addTen(mat{2]);
h\ You could also add 10 to every element in mat:

for (int row = 0; rouw < mat.length; row++)
addTen (mat [Tow] };

Example 3
Suppose Card objects have a mutator method changeValue:

public void changeValue(int newValue)
{ value = newValue; }

Now consider the declaration

Card[] (1 cardMatrix;

k\ Suppose cardMatrix is initialized with Card objects. A piece of code that traverses the :
cardMatrix and changes the value of each Card to v is :

for (Card[] row : cardMatrix) //for each Tow array in cardMatrix, i

for (Card ¢ : row) //for each Card in that row, Bl
c.changeValue(v); //change the value of that card &

Alternatively: '

for (int row = O; row < cardMatrix.length; row++)
for (int col = 0; col < cardMatrix[0].length; col++)
cardMatrix[row} [col].changeValue(v);

NOTE

The use of the nested for-each loop is OK. Modifying the objects in the matrix with a
mutator method is fine. What you can’t do is replace the Card objects with new Cards.

Two-Dimensional Arrays 253

Example 4
The major and minor diagonals of a square matrix are shown below:

Y

Major diagonal Minor diagonal

“You can process the diagonals as follows:

int[J[] mat =.new int[SIZE] [SIZE)}; //SIZE is a constant int value
for {int i = 0; i < SIZE; i++)
’ Process mat{i] [i]; //major diagonal
OR
Process mat[1] [SIZE - 1 - 1]; //minor diagonal

Two-Dimensional Array as Parameter
Example 1
. Here is a method that counts the number of negative values in a matrix.

< ;/#* Precondition: mat is initialized with integers.
* Q@return count of negative values in mat

*/
public static int countNegs (int[][] mat)
{
Jyint count = 0;
for {(int[] row : mat)
for (int num : row)
if (num < 0)
count++;
. return count;
o

A method in the same class can invoke this method with a statement such as

‘ int negs = countNegs(mat);
' Example 2

Reading elements into a matrix:
_ /*% Precondition: Number of rows and columns known.
““x @return matrix containing rows X c¢ols integers
* read from the keyboard
. ®/
public static int[] [} getMatrix(int rows, int cols)
‘ .
' int{] [] mat = new int[rows] [cols]; //initialize slots
System.out.println("Enter matrix, ome row per line:");
System.out.println();

//read user input and fill slots
for (int r = 0; r < Tows; T++)
for {int c = 0; ¢ < colsg; c++)
mat[r] [c] = I0.readInt(}; //read user input
return mat;

254 Chapter 6 Arrays and Array Lists

To call this method:
//prompt for number of rows and columms
int rows = I0.readInt(); //read user input
int cols = I0.readInt(); //read user input

int][] mat = getMatrix(zrows, cols);

NOTE

You cannot use a for-each loop in getMatrix because elements in mat are being re-
placed. (Their current value is the initialized value of 0. The new value is the nput
value from the keyboard.) :

There is further discussion of arrays and matrices, plus additional questions, in
Chapter 9 (The AP Computer Science Labs).

T Y o e e e

mmary

e IR Ty STk A

T T T

Chapter |

PRSI ER LAk ey

PR N S T

Manipulation of one-dimensional arrays, two-dimensional arrays, and array lists
should be second nature to you by now. Know the Java subset methods for the List<E>
class. You must also know when these methods throw an ITndex0ut 0fBoundsException
and when an ArrayIndexOutOfBoundsException can occur,

When traversing an ArrayList:
¢ Use a foreach loop to access each element without changing it, or to modify
each object in the list using a mutator method.
* Use an Iterator to remove elements. (This is not in the AP subset, but it is the
easiest way to remove elements from an ArrayList.)

A matrix is an array of row arrays. The number of rows ismat . Length. The number
of columns is mat [0] . 1ength. »

When traversing a matrix:

* Use a row-column traversal to access, modify, or replace elements.
e Use a nested for loop to access or modify elements, but not replace them,

* Know how to do row-by-row array processing if you have an appropriate method
that rakes an array parameter.

Multiple-Choice Questions on Arrays and Array Lists 255

MULTIPLE-CHOICE QUESTIONS ON ARRAYS AND
ARRAY LISTS

1. Which of the following correctly initializes an array arr to contain four elements
each with value 0?

I int[] arr = {0, 0, 0, 0}:
II int[] arr = new int[4];
I int[] arr = new intf4];

for (int 1 = 0; i < arr.length; i++)
arr[i] = 0;

(A) Ionly :

(B) Ml only . '
(C) Iand Il only : '
(D) M and Iil only

(E) L1, and III

2. The following program segment is intended to find the index of the first negative
integer in arr[0] ...arr [N-1], where arr is an array of N integers.

int i = 0;
while (arr(i] »>= Q)
{

it+;

H

b

location = i;

This segment will work as intended

(A) always.

(B) never.

(C) whenever arr contains at least one negative integer,

(D) whenever arr contains at least one nonnegative integer.
(E) whenever arr contains no negative integers.

3. Refer to the following code segment. You may assume that arr is an array of int
values.

int sum = arr[0Q], i = O;
while (i < arr.length)
l O

i+

. sum += arr(i];
}
Which of the following will be the result of executing the segment?
(A} Sum of arr[0], arr[1],..., arr[arr. length-1] will be stored in sum.
(B) Sumofarr{il],arr{2],..., arr[arr.length-1] will be stored in sum.
(C) Sum of arr[0], arr(1],..., arr [arr.length] will be stored in gum.
(D) An infinite loop will occur.
(E) A run-time error will occur.

256 Chapter 6 Arrays and Array Lists

4. Refer to the following code segment. You may assume that array arr1 contains }
elements arr1[0], arri {1],..., arri [N-1] , where N = arr1.length.]

int count = Q;
for (int i = 0; 1 < N; i++)
if (arri[i] 1= 0)
{
arrl[count] = arri[il;
count++;
}
int [l arr2 = new int(count];
for (int i = 0; i < count; i++)
arr2[il] = arri[il;

If array arri initially contains the elements 0,6,0,4,0,0, 2 in this order, what
will arr2 contain after execution of the code segment?

(A) 6,4,2

(B) 0,0,0,0,6,4,2 . |
(©) 6,4,2,4,0,0,2]
D) 0,6,0,4,0,0,2
(E) 6,4,2,0,0,0,0

5. Consider this program segment;
for (int i = 2; i <= k; i++)

if (arrli] < someValue)
System.out.print ("SMALL") ;

What is the maximum number of times that SMALL can be printed?

(A) o

(B) 1

C) k-1

D) k - 2 :

(E) x

Multiple-Choice Questions on Arrays and Array Lists 257

6. What will be output from the following code segment, assuming it is in the same
class as the doSomething method?

int{] arr = {1, 2, 3, 4};
doSomething(arr);
Systen.out.print(arr[1] + " "};
System.out.print(arr[3]);

public void doScmething(int{] list)
{
int[] b = 1list;
for (int i = 0; i < b.length; i++)
bli] = i;
}

(A)oo
B) 24
(C) + 3
D) o 2
(E) 03

7. Consider writing a program that reads the lines of any text file into a sequential
list of lines. Which of the following is a good reason to implement the list with
an ArrayList of String objects rather than an array of String objects?

(A) The get and set methods of ArrayList are more convenient than the []
notation for arrays.

(B) The size method of ArrayList provides instant access to the length of the
list. _ :

(C) An ArrayList can contain objects of any type, which leads to greater gen-
erality.

(D) If any particular text file is unexpectedly long, the ArrayList will automat-
ically be resized. The array, by contrast, may go out of bounds.

(E) The String methods are easier to use with an ArrayList than with an array.

8. Consider writing a program that produces statistics for long lists of numerical
data. Which of the following is the best reason to implement each list with an ar-
ray of int (or double), rather than an ArrayList of Integer (or Double) objects?

(A) Anarray of primitive number types is more efficient to manipulate than an
ArrayList of wrapper objects that contain numbers.

(B} Insertion of new elements into a list is easier to code for an array than for
an Arraylist.

(C) Removal of elements from a list is easier to code for an array than for an
ArrayList.

(D) Accessing individual elements in the middle of a list is easier for an array
than for an ArrayList, .

(E) Accessingall the elements is more efficient in an array than in an ArrayList.

258 Chapler6 Arrays and Array Lists

Refer to the following classes for Questions 9-12.

public class Address

{
private String name;
private String street;
private String city;
private String state;
private String zip;

//constructors

//accessors

public String getName()
{ return name; } '
public String getStreet()
{ return street; }
public String getCity(

{ return city; } '
public String getState()
{ return state; }
public String getZip()

{ return zip; }

}

public ¢lass Student

{
private int idNum;
private double gpa;
private Address address;

//constructors

//accessors

public Address getAddress()
{ return address; }

public int getIdNum()

{ return idNum; }

public double getGpa{)

{ return gpa; }

Multiple-Choice Questions on Arrays and Array Lists 259

9. A client method has this declaration, followed by code to initialize the list:
Address([] list = new Address[100];
Here is a code segment to generate a list of names only.

for (Address a : list)
/* line of code */

Which is a correct /* line of code */?

{A) System.out.println(Address[i].getName());
(B) System.out.println(list[i].getName()); |
(C) System.out.printin(alil.getName());

(D) System.out.println(a.getName(});

(E) System.out.println(list.getName());

10. The following code segment is to print out a list of addresses:

for (Address addr : list)
{

/% more code */

b

Which is a correct replacement for /* more code */?

I System.out.println(list[i].getName());
System.out.println(list[i].getStrest{));
System.out.print (list[i].getCity () + ", ");
System.out.print(list[i].getState() + " ");
System.out.println(list[i].getZip());

Il System.out.println{addr.getName());

- System.out.printin{addr.getStreet());
System.out.print{addr.getCity() + ", ");
System.out.print(addr.getState() + " ");
System.out.println(addr.getZip());

Il System.out.println(addx);

(A) TIonly

(B) Il only

(C) I only

(D) IandIl only
(E) LI, and Il

260 Chapter 6 Arrays and Array Lists

11. A client method has this declaration:

Student[] allStudents = new Student[NUM_STUDS]; //NUM_STUDS is
//an int constant

Here is a code segment to generate 2 list of Student names only. (You may assume {
that allStudents has been initialized.)

for (Student student : allStudents)
/* code to print list of names */

Which is a correct replacement for /* code to print list of names x/?
(A) System.out.printin(allStudents.getName(});

(B) System.out.println(student.getName());

(C) System.out.println(student.getiddress().getName()})};

(D) System.out.println(allStudents.getAddress().getName());
(E) System.out.println{student[i].getAddress().getName());

Multiple-Choice Questions on Arrays and Array Lists 261

12. Here is a method that locates the Student with the highest idNum:

/#* Precondition: Array stulrr of Student is initialized.
* @return Student with highest idNum
*/
public static Student locate(Student[] stulrr)
{
/% method body */

1

Which of the following could replace /+ method body */ so that the method
works as intended?

I int max = studrr[0].getIdNum(};
for (Student student : stuldrr)
if (student.getIdNum() > max)
{
max = student.getIdNum();
return student;
¥

return stulrr{0];

Il Student highestSoFar = stulrr[0];
int max = studrr[0].getIdNum();
for (Student student : stulrr)

if (student.getIdNum() > max)
{

max = student.getIdNum();
highestSoFar = student;
}

return highestSoFar;

III int maxPos = O;
for(int i = 1; i < stulrr.length; i++)
if (stubrr[1] .getIdNum() > studrr [maxPos].getIdNum())
maxPos = 1;
return stulrr[maxPos];

(A) Tonly

(B) ITonly

(C) Ml only

(D) Iand III only
(E) II and IIT only

262 Chapter 6 Arrays and Array Lists

Questions 13-15 refer to the Ticket and Transaction classes below.

public class Ticket

{
private String row;
private int seat;
private double price;
//constructor
public Ticket(String aRow, int aSeat, double aPrice)
{
row = aRow;
seat = aSeat;
price = aPrice;
}
//accessors getRow(), getSeat(), and getPrice()
1
public class Transaction
{
private int numTickets;
private Ticket[] tickList;
//constructor
public Transaction(int numTicks)
{
numTickets = numTicks;
tickList = new Ticket [numTicks];
String theRow;
int theSeat;
double thePrice;
for (int i = 0; i < numTicks; i++)
{
< read user input for theRow, theSeat, and thePrice >
/* more code */
}
}
/#¥ @return total amount paid for this transaction */
public double totalPaid{)
{
double total = 0.0;
/* code to calculate amount +/
return total;
1
}

Multiple-Choice Questions on Arrays and Array Lists 263

13. Which of the following correctly replaces /+ more code */ in the Transaction
constructor to initialize the tickList array?

]

(A) tickList[i] = new Ticket(getRow(), getSeat(), getPrice());
(B) tickList[i]
(C) tickList[i]
(D) tickList[i]

(E} tickList[i]

new Ticket (theRow, theSeat, thePrice);

new tickList(getRow(), getSeat(), getPrice(});

new tickList(theRow, theSeat, thePrice);

new tickList{numTicks);

14, Which represents correct /* code to calculate amount %/ in the totalPaid
method?

(A} for (Ticket t : tickList)
total += t.price;

'43*Vk - for icket t : tic iét
= (B (T kList)
total += tickList.getPrice();

(C) for (Ticket t : tickList)
total += t.getPrice();

(D) Transaction T;
for (Ticket t : T)
total += t.getPrice();

(E) Transaction T;
for (Ticket t : T)
total += t.price;

' 15. Suppose it 1s necessary to keep a list of all ticket transactions. Assuming that
there are NUMSALES transactions, a suitable declaration would be
i (A) Transaction[] list0fSales = new Transaction [NUMSALES] ;
"~ (B) Transaction[] listOfSales = new Ticket [NUMSALES]:
(C) Ticket[] listDfSales = new TramsactionINUMSALES] ;
(D) Ticket[] listOfSales = new Ticket [NUMSALES];
(E) Transaction[] Ticket = new listOfSales[NUMSALES]:

264 Chapter8 Arrays and Array Lisls

16. The following code fragment is intended to find the smallest value in
arr[0] ...arr[n~1i].

/** Precondition:
- arr is an array, arr.leagth = n.
¥ - arr[0]...arr[n-1] initialized with integers.
* Postcondition: min = smallest value in arr[0]...arr[n-1].
*/
int min = arr[0];
“int 1 = 1;
while (i < n)
{
i++;
if (arr[i] < min)
min = arr[i];

b

This code is incorrect. For the segment to work as intended, which of the follow-
ing modifications could be made?

I Change the line

int i = 1;
1o
int i = 0;

Make no other changes.

II Change the body of the while loop to
{

if (arr[i] < min)
min = arr[il;
i++;

by
Make no other changes.
[II Change the test for the while loop as follows:
while (i <= n)
Make no other changes.
(A) Tonly
(B) Monly
(C) Il only

(D} Tand I only
(E) L1I, and I

. Multiple-Choice Questions on Arrays and Array Lists 265

17. -Refer to method match below:

/#* @param v an array of int sorted in increasing order
@param w an array of int sorted in increasing order

(@param N the number of elements in array v

* @param M the number of elements in array w

Q@return true if there is an integer k that occurs

% in both arrays; otherwise returns false

* Precondition:

* v[0]..v[N-1] and w[0]..w[M-1] initialized with integers.

* v[0} < v[i] < .. < v[N-1] and wl0] < w[1] < .. < wlM-1].

*/
public static boolean match(int[l v, int[] w, int N, int M)
{
int vIndex = 0, windex = 0;
while (vIndex < N && wIndex < M)
{
, if (v{vIndex] == w[wIndex])
o ' return true; :
: else if (v[vIndex] < wlwIndex])
vIndex++;
else
windex++;
¥
return false;
}

- » Assuming that the method has not been exited, which assertion is true at the end
of every execution of the while loop?
- (A) v[0]..v[vIndex-1] and w[0] ..w[wIndex-1] contain no common value,
l vindex < Nandwlndex < M.
(B) v[0]..v[vIndex] and w{0] . .w[wIndex] contain no common value,
" yIndex < NandwIndex < M.
(C) viol..vIvindex-1] and w[0] . .w[wIndex-1] contain no common value,
wiy; -~ vindex < N-1and wIndex < M-1.
(O} vIol..vIvIndex] and w([0]..w[wIndex? contain no common value,
vindex < N-1and windex < M-1.
= (E) v[0]..vIN-13 and w[0] . .w[M-1] contain no common value,
" vIndex < Nand windex < M,

266 Chapter6 Arrays and Array Lists

18. Consider this class:

public class Book

{

¥

private String title;
private String author;
private boolean checkoutStatus;

public Book(String bookTitle, String bookAuthor)

{
title = bookTitle;
author = bookAuthor;
checkoutStatus = false;

}

/#* Change checkout status. */
public void changeStatus()

{ checkoutStatus = !checkoutStatus; }

//0ther methods are not shown.

A client program has this declaration:

Book[] bookList = new Book[SOME_NUMBER] ;

Suppose bookList is initialized so that each Book in the list has a title, author, and
checkout status. The following piece of code is written, whose intent is to change

the checkout status of each book in bookList.

. for (Book b : bookList)

b.changeStatus();

Which is true about this code?
(A) The bookList array will remain unchanged after execution.

(B) Each book in the bookList array will have its checkout status changed, as
intended.

(C) A NullPointerExceptionmay occut,

D) A run-time error will oceur because it is not possible to modify objects
using the for-each loop.
(E) A logic error will occur because it is not possible to modify objects in an
array without accessing the indexes of the objects.

Multiple-Choice Questions on Arrays and Array Lists 267

Consider this class for Questions 19 and 20:

public class BingoCard

{

private int[] card:

/#*% Default constructor: Creates BingoCard with
* 20 random digits in the range 1 - 90.
#*/

public BingoCard(

{ /* implementation mot shown */ }

/% Display BingeCard. */

public void display()

{ /* implementation not shown */ }

o}

A program that simulates a bingo game declares an array of BingoCard. The array
has NUMPLAYERS elements, where each element represents the card of a different player.
Here is a code segment that creates all the bingo cards in the game:

/* declare array of BingoCard */

/* construct each BingoCard */

19. Which of the following is a correct replacement for

/* declare array of BingoCard =/?

(A) int[] BingoCard = new BingoCard[NUMPLAYERS] ;

(B) BingoCard[] players = new int [NUMPLAYERS] ;
C) BingoCard{] players = new BingoCard[20];
g i g
(D) BingoCard[} players = new BingoCard [NUMPLAYERS] ;

(E) int[) players = new BingoCard [NUMPLAYERS] ;

20. Assuming that players has been declared as an array of BingoCard, which of the
following is a correct replacement for
/* construct each BingoCard */

I for (BingoCard card : players)
card = new BingoCard();

Il for (BingoCard card : players) _
players(card] = new BingoCard();

Il for (int i = 0; i < players.length; i++)
players[i]l = new BingoCard(};

(A) Lonly

(B) Ilonly

(C) Il only

(D) Iand Ul only
(E) L 11, and III

268 Chapter 6 Arrays and Array Lists

21. Which declaration will cause an error?
[List<String> stringlist = new ArrayList<String>();
Il List<int> intList = new ArrayList<int>();

IIT ArrayList<String> compList = new ArrayList<String>();

(A) Lonly

(B) only

(C) Olonly

(D) landIII only
(E) Il and Il only

22. Consider these declarations:

List<String> strlist = new ArrayList<String>(};
String ch = " ";
Integer intOb = new Integer(5);

Which statement will cause an error?

(A) strList.add(ch);

(B) strList.add(new String("handy andy")";
(C) strList.add{intOb.toString(});

(D) strlist.add(ch + 8);

(E) strList.add(intOb + 8);

23. Let 1ist be an ArrayList<Integer> containing these elements:

257601

Which of the following statements would 7ot cause an error to occur? Assume
that each statement applies to the given list, independent of the other statements.
(A) Object ob = list.get(6);

(B) Integer intDb = list.add(3.4);]
(C) list.add(6, 93; -
(D) Object x = list.remove(6); :
(E) Object y = list.set(s, 8);

Muttiple-Choice Questions on Arrays and Array Lists 269 -

24_ Refer to method insert below:

/%% @param list an ArrayLiét of String objects
* @param element a String object
=« Precondition: list contains String values sorted

. : in decreasing order.
+ Postcondition: element inserted in its correct position in list.
*/
public void insert (List<String> list, String element)
{

int index = 0;

while (element.compareTe(list.get(index}) < 0)
index++;

1ist.add(index, element);

¥

Assuming that the type of element is compatible with the objects in the list,
_which is a true statement about the insert method?
- (A) It works as intended for all values of element.
(B) It fails for all values of element.
"(C) It fails if element is greater than the first item in 1ist and works in all other
: cases.
g (D) Tt fails if element is smaller than the last item in 1ist and works in all other
. cases.

(E) Tt fails if elenent is either greater than the first item or smaller than the last

item in 1ist and works in all other cases.

*25. Consider the following code segment, applied to 1ist, an ArrayList of Integer
- values.

. int len = list.size();
for (int i = 0; i < len; i++)
{
list.add(i + 1, new Integer(il);
Object x = list.set(i, new Integer(i + 2));
} .

- Tf1istisinitially 6 1 8, what will it be following execution of the code segment?
C{A)234218 '

(By234622018

{(Cy234012

D) 234618

(E} 2332

270 Chapter 6 Arrays and Array Lists

Questions 26 and 27 are based on the Goin and Purse classes given below:

/* A simple coin class */
public class Cein

{
private double value;
private String name;
//constructor
public Coin(double coinValue, String coinllame)
{
value = coinValue;
name = ceoinlame;
}
/#% @return the value of this coin */
public double getValue()
{ return value; }
/*% @return the name of this coin */
public String getName()
{ return name; }
/#% @param obj a Coin object
* @return true if this coin equals obj; otherwise false
x/
public boolean equals{Object obj)
{ return name.equals(((Coin) obj).name); } 3
//0ther methods are not shown. 1 ?
} 3 3

/* A purse holds a collection of coins */
public class Purse

{

private List<Coin> coins;

/%% Creates an empty purse. */ ;
public Purse() 3
{ coins = new ArrayList<Coin>(); }

/** Adds aCoin to the purse.
* @param aCoin the coin to be added to the purse 3
*/ 3
public void add{Coin aCoin) 1
{ coins.add(aCoin); }

/*# @return the total value of coins in purse */
public double getTotal()
{ /+ implementation not shown */}

{

}

(A) for
f {

(Coin ¢

double total = 0;
/#* more code */
return total;

coins)

¢ = coins.get(i);
total += c.getValue();

(Cein ¢

coins)

Coin value = c.getValue();

total +=

(Coin ¢

Coin ¢ =
total +=

(Ceoin ¢

total +=

(Coin ¢

total +=

value;

coins)

coins.get(i};
c.getValue();

coins)

coins.getValue(};

coins)

c.getValue();

Multiple-Choice Questions on Arrays and Array Lists 271

26, Here is the getTotal method from the Purse class:

?f /** @return the total value of coins in purse #*/
© public double getTotal()

Which of the following is a correct replacement for /% more code +/?

272 Chapter6 Arrays and Array Lists

27. Two coins are said to match each other if they have the same name or the sap, ':
value. You may assume that coins with the same name have the same value anq 3
coins with the same value have the same name. A boolean method findisaddeq 3
to the Purse class:

/#% @return true if the purse has a coin that matches aCoin,
% false otherwise

*/

public boolean find(Coin aCoin)

{
for (Coin ¢ : coins)

{
/* code to find match */

¥

return false;

3

Which is a correct replacement for /* code to find match */?

I if (c.equals(aCoin))
return true;

II if ((c.getName()).equals(aCoin.getName(}))
return true;

I if ((c.getValue()).equals(aCoin.getValue()))
return true;

(A) Tonly
(B) W only

(C) I only

(D) Tand Il only
(E)} I, II, and ITI

28. Which of the following initializes an 8 x 10 matrix with integer values that are
perfect squares? (0 is a perfect square.)

T int{1[] mat = new int[8][10];

11 int[1{] mat = new int[8]1[10};
for (int r = 0; r < mat.length; r++)
for (int ¢ = 0; ¢ < matlr].length; ct+)
mat[r][c] = r * 1;

I int(1[] mat = new int[8]1[10];
for (int ¢ = 0; ¢ < mat{r].length; c+#)
for (int r = 0; r < mat.length; r++)
mat[r][c] = ¢ * ¢;

(A) Tonly

(B) Il only

(C) I only

(D) Iand IT only
(E) L 11, and ITI

Muiftiple-Choice Questions on Arrays and Array Lists 273

. 29.". Consider a class that has this private instance variable:
private int(] [] mat;
~ The class has the following method, alter.

public void alter(int c)

{
~for (int i = 0; i < mat.length; i++)
for (int j = ¢ + 1; 3 < mat[0].length; j++)
mat [i] [j-1] = mat[i][j1;
}

" If a3 X 4 matrix mat is

13867
2468 i
36579

then alter (1) will change mat to

A)i1s77
2688
3799

=
42}
~]

(B)

]
(o))
us]

H
©
ol
~

(C)
3

o
w
(8]
~I

D)

<]
o
-~
W

—
-]
-3
-3

(E)
2

TR Y T i

274 Chapter & Arrays and Array Lists

30. Consider the following method that will alter the matrix mat:

/%% @param mat the initialized matrix
* @param row the row number
*/
public static void matStuff (int(][] mat, int Tow)
{
int numCels = mat [0] .length;
for {int col = 0; col < numCols; col++)
mat [row] [col] = row;

+

Suppose mat is originally

LV 2 B NG BT
F oo o
W oN O

4
7
1

After the method call matStuff (mat »2), matrix mat will be -

(A 1 4 9 0
27 8 6
2 2 2 2
B) 1 4 9 0
2 2 2 2
5 1 4 3
C 2 2 2 2
2 2 2 2
2 2 2 2
© 1420
2 7 2 % 4
5 1 2 3
E) 1 2 9 0 1
2 2 8 6
5 2 4 3 ;
1

Multiple-Choice Questions on Arrays and Array Lists 275

31. Assume that a square matrix mat is defined by

int [] [] mat = new int[SIZE][SIZE];
//8IZE is an integer constant >= 2

What does the following code segment do?
for (int 1 = C; i < SIZE - 1; i++)

for (int j = 0; j < 8IZE - i - 1; j++)
swap(mat, i, j, SIZE - j - 1, SIZE - i - 1);

You may assume the existence of this swap method:

/** Interchange mat[a] [b] and mat[c][d]. =/
public void swap(int(J[] mat, int a, int b, int c, int d)

(A) Reflects mat through its major diagonal. For example,

2 6 2 4
4 3 6 3

- (B) Reflectsmat through its minor diagonal. For example,

2 6 3 6
4 3 4 2

(C) Reflectsmat through a horizontal line of symmetry. For example,

2 6 4 3
4 3 2 6

(D) Reflects mat through a vertical line of symmetry. For example,

2 6 & 2

4 3 3 4

(E) Leavesmat unchanged.

276 Chapter 68 Arrays and Array Lists

32. Consider a class MatrixStuff that has a private instance variable:
private int[]1[] mat;

Refer to method alter below that occurs in the MatrixStutf class. (The lines %1
are numbered for reference.) 3
Line1: /#* Qparam mat the matrix initialized with integers

Line2: * @param c the column to be removed
Line3: * Postcondition:

Line4: % - Column c¢ has been removed.

Line5: * - The last column is filled with zeros.

Line6: =/

Line7: public void alter(int[][] mat, int ¢}
Line8: { 5
Line 9: for {(int i = 0; i < mat.length; i++) C
Line 10: for (int j = c; j < mat[0].length; j++)

Line 11: mat[i][j] = mat[i] [j+11;

Line 12 //code to insert zeros in rightmost column

Line 13:

Line 14: }

The intent of the method alter is to remove column c. Thus, if the input matrix
mat 1S '

O = N
W oo
[\ RS e]

0
0

6
5
7
the method call alter(mat, 1) should change mat to
8
4
3 0

2
1
0

W O

The method does not work as intended. Which of the following changes will
correct the problem?

I Change line 10to
for (int j = ¢; j < mat[0].length - 1; j++)
and make no other changes.

II Change lines 10 and 11 to

for (int j = ¢ + 1; j < mat[0].length; j++)
mat (1] [j-1] = mat[i] [j];

and make no other changes.

III Change lines 10and 11to

for (int j = mat[0].length - 1; j > ¢; j-—)
mat[1] £j-1] = mat[i] [j];

and make no other changes.

(A) Lonly

(B) M only

(C) I only

(D) IandII only
(E) L1, and III

Multiole-Choice Questions on Arrays and Array Lists 277

33. This guestion refers to the following method:

public static boolean isThere{String[][] mat, int row, int c¢ol,
String symbol)

{
boolean yes;
int i, count = 0;
for (i = 0; i < SIZE; i++)
if (mat[il[col].equals(symbol))
count++;
yes = {count == SIZE);
count = §;
for {i = 0; i < SIZE; i++)
if (mat[row] [i3.equals(symbol))
count++; ‘
return (yes || count == SIZE);
h

Now consider this code segment:

public final int SIZE = 8;
String[][] mat = new String[SIZE] [SIZE];

Which of the following conditions on a matrix nat of the type declared in the
code segment will by itself guarantee that

isThere(mat, 2, 2, "$")
will have the value true when evaluated?

I The element in row 2 and column 2 1s "$"
II' All elements in both diagonals are "$"
T All elements in column 2 are "g"

(A) Tonly

(B) 1Ml only

(C) Iand 1l only
(D) Iand Il only
(E) M and Il only

278 Chapter6 Arrays and Array Lists

34. The method changelegs below should replace every occurrence of a negative
integer in its matrix parameter with 0.

/%% @param mat the matrix
* Precondition: mat is initialized with integers.
* Postcondition: A1l negative values in mat replaced with 0.
*/
public static void changeNegs(int (][] mat)
{
- /* code */
¥

Which is correct replacement for /% code */?

I for (int r = 0; r < mat.length; r++)
for (int ¢ = 0; c < mat[r].length; c++)
if (mat[r] [c] < 0)
mat [r] [c] = 0;

H oA

II for (int ¢ = 0; ¢ < mat[0].length; c++)
for (int r = 0; r < mat.length; r++)
if (mat{r][c] < 0)
"~ mat[r)[c] = 0:

A

Il for (int[] row : mat)
for (int element : row)
if (element < 0)
element = Q;

(A) Lonly
(B) Honly
(C) I only
(D) Iand Il only
(E) L1II, and IIX

Multiple-Choice Questions on Arrays and Array Lists 279

15, A two-dimensional array of double, rainfall, will be used to represent the daily
rainfall for a given year. In this scheme, rainfall[month] [day] represents the
* amount of rain on the given day and month. For example,

rainfall{1][15] is the amount of rain on Jan. 15
rainfall[12] [25] is the amount of rain on Dec. 25

The array can be declared as follows:

double[][] rainfall = new double[13][32];

This creates 13 rows indexed from © to 12 and 32 columns indexed from 0 to 31,
all initialized to 0.0. Row 0 and column 0 will be ignored. Column 31 in row 4
will be ignored, since April 31 is not a valid day. In years that are not leap years,
. columns 29, 30, and 31 in row 2 will be ignored since Feb. 29, 30, and 31 are not
valid days.
Consider the method averageRainfall below:

/% Precondition:

* - rainfall is initialized with values representing amounts
® of rain on all valid days.
* - Invalid days are initialized to 0.0.
- Feb 29 is not a valid day.
* Postcondition: Returns average rainfall for the year.
*/
public double averageRainfall{double rainfall[][])
{
double total = 0.0;
/% more code */
I

* Which of the following is a correct replacement for /* more code */ so that the
spostcondition for the method is satisfied?

"I for (int month = 1; month < rainfall.length; month++)
for (int day = 1; day < rainfall[month].length; day++)
total += rainfall[menth] [day];
return total / (i3 x 32);

: '_ ‘.“‘”"‘H for (int month = 1; momth < rainfall.length; month++)
for (int day = 1; day < rainfall{month].length; day++)
total += rainfall[month] [day];
return total / 365;

I for (double[] menth : rainfall)
for (double rainAmt : month)
total += rainAmt;
return total / 365;

" (A) None
(B) Lonly
. (C) Ionly
(D) Il only
- (E) M and I only

280 Chapteré Arrays and Aray Lists

36. This question is based on the Point class below:

public class Point

{
/#*% The coordinates. #/
private int x;
private int y;

public Point (int xValue, int yValue)
{

x = xValue;

y yValue;

It

}

/#* Qreturn the x—coordinate of this point */
public int getx()
{ return x; }

/** @return the y-coordinate of this point */
public int gety()
{ return y; }

/** Set x and y to new_x and new_.y. */
public void setPoint(int new_x, int new_y)

{

X
Y

new_x;
nevw_y;

1

3

//0ther methods are not shown.

}

The method changeNegs below takes a matrix of Point objects as parameter and
replaces every Point that has as least one negative coordinate with the Point
(0,0).

/** Q@param pointMat the matrix of points
* Precondition: pointMat is initialized with Point objects.
* Postcondition: Every point with at least one negative coordinate

® has been changed to have both coordinates
* equal to zero.
*/
public static void changeNegs (Point [J[] pointMat)
{ .
/* code %/

b

Multiple-Choice Questions on Arrays and Array Lists 281

Which is a correct replacement for /= code */?

I for (int r = 0; r < pointMat.length; r++)
for (int ¢ = 0; ¢ < pointMat([r].length; c++)
if (pointMat[r][c].getx() < 0
' pointMat [r] [c].gety () < Q)
pointMat [r] [c].setPoint (0, 0);

IT for (int ¢ = 0; c < pointMat[C]).length; c++)
for (int r = 0; r < pointMat.length; r++)
if (pointMat[r] [c].getx() < O
[l pointMat[r] [c].gety () < 0)
pointMat [r] [c].setPoint (0, 0);

III for (Point[] row : pointMat)
for (Point p : row)
if (p.getx() < 0 || p.gety() < 0)
p.setPoint (0, 0):

(A) Tonly

(B) Honly

(C) I only

(D) Tand M only
(E) T,1I, and IIT

282 Chapier 6 Arrays and Array Lists

37. A simple Tic-Tac-Toe board is a 3 x 3 array filled with either X’s, O’s, or blanks,
Here is a class for a game of Tic-Tac-Toe: 3

public class TicTacToe
{ 0
private String[][] board;

private static final int ROWS = 3; X o
private static final int COLS = 3;
/** Construct an empty board. */

public TicTacToe()

{
board = new String[ROWS] [COLS];
for (int r = 0; r < ROWS; r++)
for (int ¢ = 0; ¢ < COLS; c++)
boardfr][c] = " ";
¥

/#*% @param r the row number

* @param ¢ the column number

* @param symbol the symbol to be placed on boardfr][c]
#* Precondition: The square board[r][c] is empty.

x Postcondition: symbol placed in that square.

*/
public void makeMove(int r, int ¢, String symbol)
{
boardir] [c] = symbol;
}
/+* Creates a string representation of the board, e.g.
* lo | '
* Ixx |
* | ol
* @return the string representation of board
*/
public String toString()
{
String s = ""; //empty string
/% more code */
return s;
}

}

Which segment represents a correct replacement for /* more code #/ for the
toStringInﬁthod? ’

(A) for (int r = 0; r < ROWS; r++)

{
for (int ¢ = 0; ¢ < COLS; c++)
{
5 =g + |||||;
s = s + board[r] [c];
s =8+ "|\n";
¥

Muitiple-Choice Questions on Arrays and Array Lists 283

‘.?f(B) for (imt r = 0; r < ROWS; r++)

{
s =35+ "|";)
for (int ¢ = 0; c < COLS; c++)
{
s = & + board[r][el;
=g + "[\n";
}
ke
(C) for (dnt r = 0; r < ROWS; r++)
I .
s =38+ "|";
for (int ¢ = 0; ¢ < COLS; c++)
s = g + board[x] [c];
}
g =s + "I\n";
(D) for (int r = 0; r < ROWS; r++)
s =s+ "[|";
for (int ¢ = 0; ¢ < COLS; c++)
{ ‘
= s + board[r][c];
=5 + "|\n";
}
Vi(E) for (int r = 0; r < ROWS; T++)
o
s=35+ "I";
for {(int ¢ = 0; c < COLS; c++)
g = & + board[r] [c];
g =35+ "|[\n";
}

284 Chaptser 6 Arrays and Array Lists

ANSWER KEY
1. E 14. C 27. D
2. C 15. A 28. D
3. E 16. B 29. A
4. A 17. A 30. A
5. C 18. B 31. B
6. C 19. D 32. D
7. D 20. C 33. B
8. A 21. B 34. D
9. D 22. E 35. E
10. B 2. C 36. E
11. © 24. D 37. E
12. E 25. A

13. B 26. E

ANSWERS EXPLAINED

1. (E) Segment Iis an initializer list which is equivalent to

int[] axr = new int[4];
arr(0] =
arr[1]
arr[2]
arr[3]

3
3

2

[T IS - T e

.
3

Segment II creates four slots for integers, which by default are initialized to 0. The
for loop in segment III is therefore unnecessary. It is not, however, incorrect.

2. (C) Xf arr contains no negative integers, the value of 1 will eventually exceed N-1,
and arr[i] will cause an ArrayIndexOut0fBoundsException to be thrown.

3. (E) The intent is to sum elements arr[0], arr[1], ..., arrfarr.length~1].
Notice, however, that when i has the value arr.length-1, it is incremented to
arr.length in the loop, so the statement sun += arr[i] uses arr [arr.length],
which is out of range.

4. (A) The code segment has the effect of removing all occurrences of 0 from array
arr1. The algorithm copies the nonzero elements to the front of arr1. Then it
transfers them to array arr2.

5. (C) If arr[i] < someValue for all i from 2 to k, SMALL will be printed on each
iteration of the for loop. Since there are k - 1 iterations, the maximum number
of times that SMALL can be printed isk - 1.

6. (C) Array arr is changed by doSomething. Here are the memory slots:

Answers Explained 285

*Just before doSomething is called: Just after doSomething is called,
' but before the for loop is executed:
arr arr
——|1]213]|4 ——>11[213|4
list
-~
b
7
- Just before exiting doSomething: Just after exiting doSomething;:
| arr arr
1> (0]1]2]|3 |0 (12|23
list
-
b
‘ /

- set varies. An ArrayList automatically resizes the list. Choice A is false: The []

" potation is compact and easy to use. Choice B is not a valid reason because an

array arr also provides instant access to its length with the quantity arr.length.

~ Choice C is invalid because an array can also contain objects. Also, generality is
beside the point in the given program: The list must hold String objects. Choice
Els false: Whether a Stringobjectis arr[i] or List.get (i), the String methods
are -equally easy to invoke.

(A) In order for numerical elements to be added to an ArrayList, cach element
must be wrapped in a wrapper class before insertion into the list. Then, to re-
ko) 1eve a numerical value from the ArrayList, the element must be unboxed using
. the intValue or doubleValue methods. Even though these operations can be
.taken care of with auto-boxing and unboxmg, there are efﬁc1ency costs. In an
; Li'_ay, you simply use the [1 notation for assignment (as in arr (il = num) or re-
1 ‘val (value = arr[il). Note that choices B and C are false statements: Both
insertion and deletion for an array involve writing code to shift elements. An
_ AfrayList automatically takes care of this through its add and remove methods.
Choice D is a poor reason for choosing an array. While the get and set methods
Of arrayList might be slightly more awkward than using the [] notation, both
mechamsms work pretty easily. Choice E is false: Efficiency of access is roughly
the samme.

. (D) For each Address object a in 1list, access the name of the object with
a getName()

: (B) Since the Address class does not have a toString method, each data field must
iCXphcmly be printed. Segment III would work if there were a toString method
for the class (but there isn’t, so it doesn’t!). Segment I fails because of incorrect
e of the for-each loop: The array index should not be accessed.

(C) Each student name must be accessed through the Address class accessor
lgetName() The expression student.getAddress () accesses the entire address of

286 Chapter 6 Arrays and Array Lists

12.

13.

14,

15.

16.

17.

18.

19.

20.

that student. The name field is then accessed using the getName () accessor of the
Address class.

(E) Both correct solutions are careful not to lose the student who has the
highest iaNum so far. Segment II does it by storing a reference to the student,
highestSoFar. Segment III does it by storing the array index of that student,
Code segment 1 is incorrect because it returns the first student whose idNun j
greater than max, not necessarily the student with the highest idNum in the list.

(B) For each i, tickList[i] is a new Ticket object that must be constructed
using the Ticket constructor. Therefore eliminate choices C, D, and E. Choice
A is wrong because getRow(), getSeat (0, and getPrice() are accessors for val-
ues that already exist for some Ticket object. Note also the absence of the dot
member construct.

(C) To access the price for each Ticket in the tickList array, the getPrice()
accessor in the Ticket class must be used, since price is private to that class. This
eliminates choices A and E. €hoice B uses the array name incorrectly, Choices
D and E incorrectly declare a Transaction object. (The method applies to an
existing Transaction object.)

(A) Anarray of type Transaction is required. This eliminates chojces CandD.
Additionally, choices B and D incorrectly use type Ticket on the right-hand side.
Choice E puts the identifier 1ist0fSales in the wrong place.

(B) There are two problems with the segment as given:

1. arr(1i] is not tested,
2. When i has a value of -1, incrementing i will lead to an out-of-range
error for the if(arr(i] < min) test.

Modification II corrects both these errors. The change suggested in III corrects
neither of these errors, The change in I corrects (1) but not (2.

(A) Notice that either vIndex or wIndex is incremented at the end of the loop.
This means that, when the loop is exited, the current values of v[vIndex] and
w[wIndex] have not been compared. Therefore, you can only make an assertion
for values v[01. .v[vIndex-1] and wi0] . .u (wIndex-1]. Also, notice that if there
is no common value in the arrays, the exiting condition for the while loop will
be that the end of one of the arrays has been reached, namely vIndex equals N or
wlindex equals M.

(B) Objects in an array can be changed in a for-each loop by using mutator meth-
ods of the objects’ class. The changeStatus method, a mutator in the Book class,
will work as intended in the given code. Choice C would be true if 1t Were not
given that each Book in bookList was initialized. If any given b had a value of
null, then a NullPointerfxception would be thrown,

(D) The declaration must start with the type of value in the array, namely
BingoCard. This eliminates choices A and E. Eliminate choice B: The type on
the right of the assignment should be BingoCard. Choice C is wrong because the
number of slots in the array should be NUMPLAYERS, not 20,

(C) Segment Il is the only segment that works, since the for-each loop cannot
be used to replace elements in an array. After the declaration

BingoCard[] players = new BingoCard [NUMPLAYERS] ;

Answers Explained 287

each element in the players array is null. The intent in the given code is to
replace each null reference with a newly constructed BingoCard.

1. .(B) The type parameter in a generic ArrayList must be a class type, not a primi-
' tive. Declaration I would be correct if it were

List<Integer> intlist = new ArraylList<Integer>(};

.{(E} All elements added to strList must be of type String. Each choice satisfies
this except choice E. Note that in choice D, the expression ch + 8 becomes a
String since ch is a String (just one of the operands needs to be a String to
convert the whole expression to a String). In choice E, neither int0b nor 8 is a
String.

. (C) The effect of choice C is to adjust the size of the list to 7 and to add the
Integer ¢ to the last slot (i.e., the slot with index 6). Choices A, D, and E will
all cause an IndexOut0fBoundsException because there is no slot with index 6:
the last slot has index 5. Choice B will cause a compile-time error, since it is
attempting to add an element of type Double to a list of type Integer.

. {D) If element is smaller than the last item in the list, it will be compared with
every item in the list. Eventually index will be incremented to a value that is out
of bounds. To avoid this error, the test in the while loop should be

while{index < list.size() &%
element.compareTo(list.get(index)) < 0)

Notice that if element is greater than or equal to at least one item in 1ist, the test
as given in the problem will eventually be false, preventing an out-of-range error.
. {A) Recall that add(index, obj) shifts all elements, starting at index, one unit
to the right, then inserts obj at position index. The set (index, obj) method
replaces the element in posttion index with obj. So here is the state of 1ist after
each change: '

i=2¢0 6018
2018

i=1 20118
23118

i=2 231218
234218

. (E) The value of each Coin ¢ in coins must be accessed with ¢. getValue (). This
eliminates choice D. Eliminate choices A and B: The loop accesses each Coin
in the coins ArrayList, which means that there should not be any statements
atternpting to get the next Coin. Choice B would be correct if the Arst statement
in the loop body were

double value = c.getValue();

. (D) Code segment III is wrong because the equals method is defined for ob-
jects only. Since getValue returns a double, the quantities ¢.getValue() and
aCoin.getValue() must be compared either using ==, or as described in the box
on p. 65 (better).

- (D) Segment Il is the straightforward solution. Segment I is correct because it
initializes all slots of the matrix to 0, a perfect square. (By default, all arrays of
int or double are imtialized to 0.) Segment I fails because r is undefined in the
condition ¢ < mat[r].length. In order to do a column-by-column traversal, you
need to get the number of columns in each row. The outer for loop could be

L 288 Chapter 6 Arrays and Array Lists

for (int ¢ = 0; ¢ < mat[0].length; c++)

T Now segment I works. Note that since the array is rectangular, you can usd

any index k in the conditional ¢ < mat[k].length, provided that & satlsﬁes thi
condition 0 <k < mat..length (the number of rows). 4

29. (A) Method alter shifts all the columns, starting at column c+1, one columy
to the left. Also, it does it in a way that overwrites column c. Here are th
replacements for the method call alter(1):

mat [0] [1] = mat [0] [2]
mat [0] [2] = mat[0] [3]
mat [1] [1] = mat[1] [2]
mat[1] [2] = mat[1] [3]
mat [2] (1] = mat[2] [2]
mat[2] 2] = mat[2] [3]

30. (A) matStuff processes the row selected by the row parameter, 2 in the metho
call. The row value, 2, overwrites each element in row 2. Don’t make the mistak
.of selecting choice B—the row labels are 0, 1, 2.

31. (B) Hand execute this for a 2 X 2 matrix. i goes from O to 0, j goes from 0 t0 0, s0
the only interchange is swap mat [0] [0] with mat {11 [1], which suggests choice”
B. Check with a 3 x 3 matrix:

i=0 j=0 swap mat[0][0) with mat[2][2]
1 swap mat (0] [1] with mat[1] [2]
0 swap mat[1]1[0] with mat[2] [1]

. .
1]

i=1

The elements to be interchanged are shown paired in the following figure. The
result will be a reflection through the minor diagonal.

7 9 0 G

32. (D) The method as given will throw an ArrayIndexOut0fBoundsException. For
the matrix in the example, mat [0] . Length is 4. The call mat.alter (1) gives ca
value of 1. Thus, in the inner for loop, j goes from 1to 3. When j is 3, the line
mat [1]1 [§] = mat[i] [j+1] becomesmat[i] [3] = mat [i] [4]. Since columns go
from O to 3, mat [i] [4] is out of range. The changes in segments I and II both
fix this problem. In each case, the correct replacements are made for each row
i: mat[11[1] = mat[i][2] andmat[i] (2] = mat[i] [3]. Segment JT makes the
following incorrect replacements as j goes from 3 to 2: mat [i] [2] = mat[1] [3]
and mat [i] (1] = mat[i]{2]. This will cause both columns 1 and 2 to be over-
written. Before inserting zeros in the last column, mat will be

29 9 9
1 3 3 3
¢ 2 2 2

This does not achieve the intended postcondition of the method.

33. (B) For the method call isThere (mat, 2, 2, "$"), the code counts how many
times "$" appeats in row 2 and how many times in column 2. The method re-
turns true only if count == SIZE for either the row or column pass (i.e., the

Answers Explained 289

whole of row 2 or the whole of column 2 contains the symbol "$"). This elimi-
nates choices [and II. ,

34. (D) Segment is a row-by-row traversal; segment Il is a column-by-column traver-
sal. Each achieves the correct postcondition. Segment III traverses the matrix but
does not alter it. All that is changed is the local variable element. You cannot use
this kind of loop to replace elements in an array.

35. (B) Since there are 365 valid days in a year, the divisor in calculating the average

. must be 365. It may appear that segments II and III are incorrect because they

include rainfall for invalid days in total. Since these values are initialized to 0. 0,
however, including them in the total won’t affect the final result.

36. (E) This is similar to the previous question, but in this case segment III is also
correct. This is because instead of replacing a matrix element, you are modifying
it using a mutator method.

37. (E) There are three things that must be done in each row:

.. ® Addan opening boundary line:
s =g + " | n ;

¢ Add the symbol in each square:

for (int ¢ = 0; ¢ < COLS; c++)
s =35+ boardEr][c];

¢ Add a closing boundary line and go to the next line:
s =5 + "l\D.";
All of these statements must therefore be enclosed in the outer for loop, that is,

for (int r = ...)

