-

B it
AT

o = N

Classes and Objects

92

Work is the curse of the drinking classes.
: —QOscar Wilde

Chapter Goals

e Objects and classes ¢ Keywords public, private, and
¢ Encapsulation static
¢ Methods

» References
e Scope of variables

OBJECTS

Every program that you write involves at least one thing that is being created or ma-
nipulated by the program. This thing, together with the operations that manipulate it,
is called an obyect.

Consider, for example, a program that must test the validity of a four-digit cgde
number that a person will enter to be able to use a photocopy machine. Rules for
validity are provided. The object is a four-digit code number. Some of the operations

‘to manipulate the Object could be readNumber, getSeparateDigits, testValidity,

and writeNumber. .
Any given program can have several different types of objects. For example, a pro-
gram that maintains a database of all books in a library has at least two objects:

1. A Book object, with operations fike getTitle, isOnShelf, isFiction, anc

goOut0fPrint.
2. A ListOfBooks object, with operations like search, addBook, removeBook, anc

sortByAuthor.

An object is characterized by its state and behavior. Tor example, a book has a stat
described by its title, author, whether it’s on the shelf, and so on. It also has behaviot
Jike going out of print.

Notice that an object is an idea, separate from the concrete details of a programmin;
language. It corresponds to some real-world object that is being represented by th

program.

All object-oriented programming languages have a way to represent an object as a
variable in a program. In Java, a variable that represents an object is called an object
reference. '

CLASSES

A class is a software blueprint for implementing objects of a given type. An object is a
single snstance of the class. In a program there will often be several different instances
of a given class type.

The current state of a given object is maintained in its data fields or instance variables,
provided by the class. The methods of the class provide both the behaviors exhibited
by the object and the operations that manipulate the object. Combining an object’s
data and methods into a single unit called a class is known as encapsulation.

Here is the framework for a simple bank account class:

public class BankAccount
{
private String password;
private double balance;
public static final double OVERDRAWN_ PENALTY = 20.00;

//constructors
/** Default constructor.
* Constructs bank account with default values. */
public BankAccount{)
{ /% implementation code */ }

/** Constructs bank account with specified password and balance. */
public BankAccount(String acctPassword, double acctBalance)
{ /* implementation code %/ }

//accessor
/*% @return balance of this account */
public double getBalance() -

{ /* implementation code */ }

//mutators
/*% Deposits amount in bank account with given password,

B * @param acctPassword the password of this bank account

* G@param amount the amount to be deposited
*/
public void deposit(String acctPassword, double amount)
{ /* implementation code %/ }

/#** Withdraws amount from bank account with given password.
Assesses penalty if balance is less than amount.
@param acctPassword the password of this bank account
@param amount the amount to be withdrawn

*/
public void withdraw(String acctPassword, double amount)
{ /# implementation code */ }

Classes

93

94 Chapter2 Classes and Objects

PUBLIC PRIVATE AND STATIC

The keyword public preceding the class declaration signals that the class is usable by
all client programs. If a class is not public, it can be used only by classes in its own
package. In the AP Java subset, all classes are public.

Similarly, public methods are accessible to all client programs. Clients, however, are’
not prwy to the class implementation and may not access the private instance variables
and private methods of the class. Restriction of access is known as information hiding.
In Java, this is implemented by using the keyword private. Private methods and vari-
ables in a class can be accessed only by methods of that class. Even though Java allows
public instance variables, in the AP Java subset all instance variables are private.

A static variable (class variable) contains a value that is shared by all instances of the
class. “Static” means that memory allocation happens once. :

Typical uses of a static variable are to

o keep track of statistics for objects of the class.
o accumulate a total.

e provide a new identity number for each new object of the class.
For example:

pueblic class Employee

{
private String name;
private static int employeeCount = 0; //mumber of employees
public Employee(< parameter list >)
{
< initialization of private instance variables >
employeeCount++; //increment count of all employees
}
} .

Notice that the static variable was initialized outside the constructor and that its value
can be changed.

Static final variables (constants) in a class cannot be changed. They are often de-
clared public (see some examples of Math class constants on p. 183). The variable
OVERDRAWN_PENALTY is an example in the BankAccount class. Since the variable is
public, it can be used in any client method. The keyword static indicates thac
there is a single value of the variable that applies to the whole class, rather than a
new instance for each object of the class. A client method would refer to the vari-
able as BankAccount . OVERDRAWN_PENALTY. In its own class it is refesred to as stmply
OVERDRAWN_PENALTY.

See p. 97 for static methods.

Methods

METHODS
Headers

. All method headers, with the exception of constructors (see below) and static methods
= ~ (p- 97), look like this:

gy ST

by

public void withdraw (String password, double amount)
——
access specifier returntype method name parameter list

NOTE

1. The access specifier tells which other methods can call this method (see Public,
Private, and Static on the previous page).

2. A return type of void signals that the method does not return a value.

3. Ttems in the parameter list are separated by commas.

The implementation of the method directly follows the header, enclosed in a {}

block.

Types of Methods
CONSTRUCTORS

A constructor creates an object of the class. You can recognize a constructor by its
name—always the same as the class. Also, a constructor has no return type.

Having several constructors provides different ways of initializing class objects. For
example, there are two constructors in the BankAccount class.

1. The default constructor has no arguments. It provides reasonable initial values
for an object. Here is its implementation:

/** Default constructor.
* Conmstructs a bank account with default values. */
public BankAccount ()

{
password = "";
balance = 0.0;
}
In a client method, the declaration .

BankAccount b = new BankAccount () ;

constructs a BankAccount object with a balance of zero and a password equal
to the empty string. The new operator returns the address of this newly con-
structed object. The variable b is assigned the value of this address—we say “b
is a reference to the object.” Picture the setup like this:

95

96 Chapter2 Classes and Objects

. BankAccount -

(L1}

4 —>| password

: -béla‘m_:‘é 0

2. The constructor with parameters sets the instance variables of a BankAccount
object to the values of those parameters.
Here is the implementation:

/** Constructor. Comstructs a bank account with
¥ specified password and balance. */
public BankAccount(String acctPassword, double acctBalance)
{
password = acctPassword;
balance = acctBalance;

¥

In a client program a declaration that uses this constructor needs matching
parameters: :

BankAccount ¢ = new BankAccount ("KevinC", 800.00);

. BankAccount .

St "pas',swo‘rd f_‘ "KevinC" |

" balance | 800.00 |

NOTE

b and < are object variables that store the addresses of their respective BankAccount ob- &
jects. They do not store the objects themselves (see References on p. 101). x

ACCESSORS . _ g
An accessor method accesses a class object without altering the object. An accessor |

returns some information about the object.
_ The BankAccount class has a single accessor method, getBalance(). Here is its im-

plementation:

/%% @return the balance of this account */
public double getBalance()
{ return balance; }

A client program may use this method 4s follows:

BankAccount bl = new BankAccount("MattW", 500.00);
BankAccount b2 = new BankAccount ("DannyB", 650.50);
if (bl.getBalance() > b2.getBalance())

]

b e e

Methods

'NOTE

“The . operator (dot operator) indicates that getBalance() is a method of the class to
“which b1 and b2 belong, namely the BankAccount class.

MUTATORS

“A mutator method changes the state of an object by modifying at least one of its in-
stance variables.

Here are the implementations of the deposit and withdraw methods, each of which
alters the value of balance in the BankAccount class:

/** Deposits amount in a bank account with the given password.
* @param acctPassword the password of this bank account
* @param amount the amount to be deposited
*/
public void deposit(String acctPassword, double amount)
{
if (lacctPassword.equals{password))
/* throw an exception */
else
balance += amount;

/** Withdraws amount from bank accourt with given password.
*# Assesses penalty if balance is less than' amount.
. * @param acctPassword the password of this bank account
* @param amount the amount te¢ be withdrawm
o k/
public void withdraw(String acctPassword, double amount)
A
e if (lacctPassword.equals(password))
/% throw an exception */
else

{

balance -= amount; //allows negative balance
if ({balance < 0) '
balance —= OVERDRAWN_PENALTY;

A mutator method in a client program is invoked in the same Way as an accessor: us-
mg an object variable with the dot operator. For example, assuming valid BankAccount
.deciaratlons for b1 and b2:

ffbl.w1thdraw(“MattW", 200.00);
b2, deposit ("DannyB", 35.68};

. STATIC METHODS

StatIC Methods vs. Instance Methods The methods discussed in the preceding
sections—constructors, accessors, and mutators—all operate on individual objects of a
class. They are called instance methods. A method that performs an operation for the
entire class, not its individual objects, is called a static method (sometimes called a class

method)

97

98 Chapter2 Classes and Objects

The implementation of a static method uses the keyword static in its header. There
is no implied object in the code (as there is in an instance method). Thus, if the code
tries to call an instance method or invoke a private instance variable for this nonex-
istent object, a syntax error will occur. A static method can, however, use a static
variable in its code. For example, in the Employee example on p. 94, you could add a
static method that returns the employeeCount: :

public static int getEmployeeCount ()
{ return employeeCount; }

Here’s an example of a static method that might be used in the BankAccount class.
Suppose the class has a static variable intRate, declared as follows:

private static double intRate;
The static method getInterestRate may be as follows:

public static double getInterestRate ()

{ .
System.out.println("Enter interest rate for bank account");
System.out.println("Enter in decimal form:");
intRate = I0.readDouble(); // read user input
return intRate;

}

Since the rate that's read in by this method applies to all bank accounts in the class,
not to any particular BankAccount object, it’s appropriate that the method should be
static. : :

Recall that an instance method is invoked in a client program by using an object
variable followed by the dot operator followed by the method name:

. BankAccount b = new BankAccount(); //invokes the deposit method for
b.deposit (acctPassword, amount) ; //BankAccount object b

A static method, by contrast, is invoked by using the class name with the dot operator: ,

double interestRate = BankAccount.gefInterestRate();

Static Methods in a Driver Class Often a class that contains the main() method
is used as a driver program to test other classes. Usually such a class creates no objects
of the class. So all the methods in the class must be static. Note that at the start of
program execution, no objects exist yet. So the main () method must afways be static.
* For example, here is a program that tests 2 class for reading integers entered at the

keyboard. :

' import java.util.*;
public class GetListTest
{

/¥% Qreturn a list of integers from the keyboard */
public static List<Integer> getlist ()
{ ,
List<Integer> a = new ArrayList<Integer>();
1 < code to read integers into a>
I : return a;

/#*% Write contents of List a.
* @param a the list
*/
public static void writeList(List<Integer> a)

{

System.out.println("List is : " + a);

}

public static void main(String[] args)

{
List<Integer> list = getlist();
writeList(list);

~NOTE

1. The calls to writeList(1list) and getList() do not need to be preceded by
GetListTest plus a dot because main is not a client program: It is in the same
class as getList and writeList,

2. If you omit the keyword static from the getList or writeList header, you
get an error message like the following:

Can’t make static reference te method getList()
in class GetListTest

The compiler has recognized that there was no object variable preceding the
method call, which means that the methods were static and should have been
declared as such.

‘*l\'!iethod Overloading

Overloaded methods are two or more methods in the same class that have the same
name but different parameter lists. For example,

public class DoOperations

{
public int product(int n) { return n * n; }
public double product{double x) { return x * x; }
public double product{int x, int y) { return x * y; }

The compiler figures out which method to call by examining the method’s signature.

: The signature of a method consists of the method’s name and a list of the parameter
. types Thus, the signatures of the overloaded product methods are

product (int)
product (double)
product (int, int)

- Note that for overloading purposes, the return type of the method is irrelevant.

You can’t have two methods with identical signatures but different return types. The
compiler will complain that the method call is ambiguous.

~ Having more than one constructor in the same class is an example of overloading.
Overloaded constructors provide a choice of ways to initialize objects of the class.

Methods 99

fed

100 Chapter2 Classes and Objects ‘ i

rn

SCOPE | -

The scope of a variable or method is the region in which that variable or method is

visible and can be accessed. _ 1
The instance variables, static variables, and methods of a class belong to that class’s

scope, which extends from the opening brace to the closing brace of the class defi-

nition. Within the class all instance variables and methods are accessible and can be 4)

referred to simply by name (no dot operator). u
A local variable is defined inside a method. It can even be defined inside a statement. :i

Its scope extends from the point where it is declared to the end of the block in which
its declaration occurs. A block is a piece of code enclosed in a {} pair. Whenablockis il E
exited, the memory for a local variable is automatically recycled. 3

Local variables take precedence over instance variables with the same name. (Using
the same name, however, creates ambiguity for the programmer, leading to errors. You

should avoid the practice.) : 3
The this Keyword i
: : T
An instance method is always called for a particular object. This object is an implicic JEE
parameter for the method and is referred to with the keyword this. You are expected ‘S E:
to know this vocabulary for the exam. -
In the implementation of instance methods, all instance variables can be written va
with the prefix this followed by the dot operator. . 8
Example 1 E |
In the method call obj .doSomething("Mary" ,num), where obj is some class object
and doSomething is a method of that class, "Mary" and num, the parameters in paren- ; N
theses, are explicit parameters, whereas obj is an implicit parameter. 1
Example 2
Here’s an example where this is used as a parameter. E 4 %
public class Person f
{ . . - Iti
private String name; & 0
private int age; = P
. _ ' an
public Person(String aName, int anAge) - of
{ '] sem
name = aName; ;
_ age = anige; E RI
Re
/** @return the String form of this person */ :}f 1
public String toString() A
{ return name + " " + age; } are
, wa

public void printPerson()
{ System.out.println(this); }

//0ther variables and methods are not shown.

Suppose a client class has these lines of code:

Person p = new Person("Dan", 10};
"p.printPerson();

The statement

-,System.out.println(this);

n the printPerson method means “print the current Person object.” The output

#should be: Dan 10. Note that System.out.println invokes the toString method of
he Person class.

~ The deposit method of the BankAccount class can refer to balance as follows:

public void deposit(String acctPassword, double amount)

{

this.balance += amount;

‘The use of this is unnecessary in the above example.

Example 4

Consider a rational number class called Rational, which has two private instance
wvariables:

‘private int num; //numerator
private int denom; //denominator

Now consider a constructor for the Rational class:

public Rational(int num, int denom)
{

this.num = num;

this.denom = denom;

}

t is definitely 70t a good idea to use the same name for the explicit parameters and the
. private instance variables. But if you do, you can avoid errors by referring to this.num

-and this.denom for the current object that is being constructed. (This particular use
of this will not be tested on the exam.)

REFERENCES

A S T o S

Réference vs. Primitive Data Typés

All of the numerical data types, like double and int, as well as types char and boolean,

are primitive data types. All objects are reference data types. The difference lies in the
ay they are stored. '

- Consider the statements

mm?_—ﬁ?:ﬁw:«;xt-?ﬂj»..,m.-u. D AR

References

101

=3

102 Chapter2 Classes and Objects

int numl = 3;

int num2 = numil;
The variables num1 and nun? can be thought of as memory slots, labeled nun3 and nun2,
respectively:

P Y numl num2

EINE]

If either of the above variables is now changed, the other is not affected. Each has its

own memory slot.
Contrast this with the declaration of a reference data type. Recall that an object is

created using new:

Date d = new Date(2, 17, 1948);

This declaration creates a reference variable d that refers to a Date object. The value of
d is the address in memory of that object: '

_ Date
d month 2
e - ' _
day : 17
- year 1948

Suppose the following declaration is now made:
Date birthday = d;

This statement creates the reference variable birthday, which containg the same ad-

dress as d:
d Da‘;e .
4 N)
month - 2
birthday Cday | 17
——u—_—+ . . .E
year . - 1948

Having two references for the same object is known as aliasing. Aliasing can cause
unintended problerns for the programmer. The statement

d.changeDate();

will automatically change the object referred to by birthday as well.

What the programmer probably intended was to create a second object called
birthday whose attributes exactly matched those of d. This cannot be accomplished
without using new. For example, '

Date birthday = new Date(d.getMonth(), d.getDay(), d.getYear());

The statement d. changeDate () will now leave the birthday object unchanged.

Heferances

-The Null Reference
‘The declaration
BankAccount b:

defines a reference b that is uninitialized. (To construct the object that b refers to
requires the new operator and a BankAccount constructor.) An uninitialized object
variable is called a null reference or null pointer. You can test whether a variable refers
to an object or is uninitialized by using the keyword aull:

- if (b == null)
Tf a reference is not null, it can be set to null with the statement
b = null;

. An attempt to invoke an instance method with a null reference may cause your
program to terminate with a NullPointerException. For example,

public class PersonalFinances

{
" . BankAccount b; //b is a null reference
b.withdraw(acctPassword, amt); //throws a NullPointerException
) //if b not constructed with new
NOTE

. It you fail to initialize a local variable in a method before you use it, you will get a
compile-time error. If you make the same mistake with an instance variable of a class,

103

the.compiler provides reasonable default values for primitive vartables (0 for numbers,
false for booleans), and the code may run without error. However, if you don’t
initialize reference instance variables in a class, as in the above example, the compiler
will set them to nu1i. Any method call for an object of the class that tries to access iy

Do not make a

method call with an
object whose value is

- the null reference will cause a run-time error: The program will terminate with a
NullPointerException.

Method Parameters
FORMAL VS. ACTUAL PARAMETERS

The header of a method defines the parameters of that method. For example, consider
t_he withdraw method of the BankAccount class:

. public class BankAccount
A

public void withdraw(String acctPassword, double amount)

This method has two explicit parameters, acctPasswordand amount. These are dummy
ot formal parameters. Think of them as placeholders for the pair of actual parameters
or arguments that will be supplied by a particular method call in a client program.
For example,

104 Chapter 2 Classes af?d Objects

BankAccount b = new BankAccount("TimB", -1000);
b.withdraw("TimB", 250);

Here "TimB" and 250 are the actual parameters that match up with acctPassword and
amount for the withdraw method.

NOTE

1. The number of arguments in the method call must equal the number of param-
eters in the method header; and the type of each argument must be compatible

with the type of each corresponding parameter.
2. In addition to its explicit parameters, the withdraw method has an implicit
parameter, this, the BankAccount from which money will be withdrawn. In

the method call
b.withdraw{("TimB", 250);

the actual parameter that matches up with this is the object reference .

PASSING PRIMITIVE TYPES AS PARAMETERS

Parameters are passed by value. For primitive types this means that when a method is
called, a new memory slot is allocated for each parameter. The value of each argument
is copied into the newly created memory slot corresponding to each parameter.
‘During execution of the method, the parameters are local to that method. Any’
changes made to the parameters will not affect the values of the arguments in the talling
program. When the method is exited, the local memory slots for the parameters are

erased.
Here’s an example: What will the output be?

public class ParamTest

{
" public static void foo{int x, double y)
. { -
x = 3;
y = 2.5;
}
public static void main(String[] args)
{
int a = 7;
double b = 6.5;
foo(a, b);
. System.out.printlnfa + " " + b);
} ‘ :
}
The output will be
7 6.5

The arguments a and b remain unchanged, despite the method call!
This can be understood by picturing the state of the memory slots during execution

of the program.

References

Just before the foo(a, b) method call:

Hm
O
!U

At the time of the foo(a, b) method call:

Hm
o¥
Py =

B

]
(=)
)~

Just before exiting the method: Note that the values of x and y have been changed.
a b
X v .

After exiting the method: Note that the memory slots for x and y have been reclaimed.
The values of a and b remain unchanged.

a b

PASSING OBJECTS AS PARAMETERS

In Java both primitive types and object references are passed by value. When an ob-
ject’s reference is a parameter, the same mechanism of copying into local memory is
used. The key difference is that the address (reference) is copied, not the values of the
individual instance variables. As with primitive types, changes made to the parameters
will not change the values of the matching arguments. What this means in practice is
that it 1s not possible for a method to replace an object with another one—you can’t
change the reference that was passed. It is, however, possible to change the state of the
object to which the parameter refers through methods that act on the object.

Example 1

A method that changes the state of an object.
/#* Subtracts fee from balance in b if current balance too low. */

public static void chargeFee(BankAccount b, String password,
double fee)

{
final double MIN_BALANCE = 10.00;
if (b.getBalance() < MIN_BALANCE)
b.withdraw(password, fee);
} .

public static veid main(Stringl[] args)

{
final dcuble FEE = 5.00;
BankAccount andysAccount = new BankAccount("AndyS", 7.00);
chargeFee{andysAccount, "AndyS", FEE};

105

106 Chapter2 Classes and Objects

Here are the memory slots before the chargeFee method call:

" BankAdcount
FEE andysAccount RTINS) '
5 > | pastword | "AndyS"
) “‘balance 7

At the time of the chargeFee method call, copies of the matching parameters are made:

FEE andyshccount

P 5 P el Cal)
/ ’/ :
i !
\ fee \ b SR
M 5 N , > balanci

password

ItAndySH

Just before exiting the method: The balance field of the BankAccount object has been

changed.
. FEE andysAccount éﬁiﬁ
5 ——)- SR,
w n |°
fee b . ! Ay -
) o .] ’4‘5) — _
’password
"Andys“

After exiting the method: All parameter memory slots have been erased, but the object
remains altered.

' :'%P;ém;A:c't:_ouht"
FEE andysAccount T RN

" T | passierd | "Amays

batance’ [2

NOTE

The andysAccount reference is unchanged throughout the program segment. The ob-
ject to which.it refers, however, has been changed. This is significant. Contrast this
with Example 2 below in which an attempt is made to replace the object itself.

Attt}
are n

References

Example 2

A chooseBestAccount method attempts—erroneously—to setits betterFund param-
eter to the BankAccount with the higher balance:

public static void chooseBestAccount(BankAccount better,
BankAccount bl, BankAccount b2)

{
if (bl.getBalance() > b2.getBalance())
better = bi;
else
better = b2;
}
public static veid main(Stringf] args)
{ .
BankAccount briansFund = hew BankAccount("BrianL", 10000} ;
Bankiccount paulsFund = new BankAccount ("PaulM", 90000);
BankAccount betterFund = null;
chooseBestAccount (betterFund, briansFund, paulsFund);
}

The intent is that betterFund will be a reference to the paulsFund object after ex-
ecution of the chooseBestAccount statement. A look at the memory slots illustrates
why this fails.

Before the chooseBestAccount method call:

Bankdccount
briansFund
—4————>| password | "BrianL"
balance - 10000
BankAccount
paulsFund : _
4 péstord-- "PaulM"
balancé 20000
betterFund

At the time of the chooseBestAccount method call: Copies of the matching references
are made.

107

briansFund

- s}

“;paSéWQfa‘ﬁ "BrianL"

balamce | 10000

. BankAccount

betterFund

—
|

| better

-

briansFund

bt

paulsFund

b2

L

. Baskhgoount

password”’| "PaulM"

Just before exiting the method: The value of better has been changed; betterFund,
however, remains unchanged.

N I

"Brianl,"

10000

o

betterFund

better-

- balanice -

"PaulM"

i

20000

After exiting the method: All parameter slots have been erased.

- BankAccount
briansFund '
———>| password "BrianL"
balance 10000
BankAccount
paulsFund S
-4 | password "PaulM"
balance 90000
betterFund

“Note that the betterFund reference continues to be null, contrary to the program-
‘mer’s intent.
The way to fix the problem is to modify the method so that it returns the better
account. Returning an object from a method means that you are returning the address
_of the object.

public static BankAccount chooseBestAccount(BankAccount bl,
BarkAccount b2)

{
BankAccount better;
if (bl.getBalance(} > b2.getBalance())
better = bil;
alse
better = b2;
return better;
} +
public static veid main(Stringl] args)
{
BankAccount briansFund = new BankAccount("BriamnL", 10000);
BankAccount paulsFund = new BankAccount ("PaulM", 90000);
BankAccount betterFund = chooseBestAccount (briansFund, paulsFund) ;
}
NOTE

.The effect of this is to create the betterFund reference, which refers to the same object
jaspaulsFund

paulsFund ~ BankAccount
B .
betterFund password "Par1M"

balance 90000

References 109

110 Chapter2 Classes and Objects

What the method does 7ot do is create a new object to which betterFund refers. Todo
that would require the keyword new and use of a BankAccount constructor. Assuming
that a getPassword () accessor has been added to the BankAccount class, the code would

look like this:

public static BankAccount chooseBestAccount (BankAccount bl,
BankAccount b2)

{
BankAccount better;
if (bl.getBalance() > b2.getBalance()}.
better = new BankAccount (bl.getPassword(), bi.getBalance());
else '
better = new BankAccount(b2.getPassword(), b2.getBalance(});
return better; !
3
Using this modified method with the same main() method above has the following
effect:
Barikhccount
briansFund R
i NS 'pag's_wbrd:_' | "BrianL"
10000
ankAccount
paulsFund e :
S ‘?a's"swpf._d “1 "PaulM”
. balance | 90000
betterFund o e
_ > |- password | "PaulM"
. balance | 90000

Modifying more thar one object in a method can be accomplished using a wrapper
‘class (see p. 180).

e P PG e R

YRS - e T o D R R

By now you should be able to write code for any given object, with its private data
fields and methods encapsulated in a class. Be sure that you know the various types of
methods—static, instance, and overloaded.

You should also understand the difference between storage of primitive types and
the references used for objects.

Questions 1-3 refer to the Time class declared below:

“

M’QlﬁpléﬁChoice Questions on Classes and Objects 111

B3 RO e T S

=k L S AT R

public class Time

{ .

private int hrs;
private int mins;
private int secs;

public Time()
{ /* implementation not shown */ }

public Time{int h, int m, int s)
{ /* implementation not shown */ }

/#* Resets time to hrs = h, mins = m, secs = 5. */
public void resetTime(int h, int m, int s)
{ /% implementation not shown */ }

/#* Advances time by one second, */
public void increment()
{ /#* implementation not shown */ }

/#* @return true if this time equals t, false otherwise %/

public boolean equals(Time t)
{ /* implementation not shown */ }

/*% @return true if this time is earlier than t, false otherwise */
public boolean lessThan{(Time t)
{ /% implementation not shown */ }

/#** @return a String with the time in the form hrs:mins:secs */
public String toString()
{ /* implementation not shown */ }

Which of the following is a false statement about the methods?

(A) equals,lessThan, and toString are all accessor methods.

(B) increment is a mutator method.
(C) Time () is the default constructor.

(D) The Time class has three constructors.
(E) There are no static methods in this class.

* [

112 Chapter2 Classes and Objects

2. Which of the following represents correct implementation code for the constructor
with parameters?

(A) hrs = 0;
mins = 0;
gecs = 0;

(B) hrs = h;
mins = m;
5eC8 = 8;

(C) resetTime(hrs, mins, secs);

(D) h = hrs;
m = mins;
8 = secs;

(E) Time = new Time(h, n, §);

3. A client class has a display method that writes the time represented by its pa-
rameter:

/** DQutputs time t in the form hrs:mins:secs.
* @param t the time
*/
public void display (Time t)
{
/% method body */
T

Which of the following are correct replacements for /* method body */?

I Time T = new Time(h, m, s);
System.out.println(T);

Il System.out.println(t.hrs + ":" + t.mins + ":" + t.secs);

Il System.out.println(t);

(A) Tonly

(B) Il only

(C) II only

(D) Iland I only
(E} LI, andTIT

4. Which statement about parameters is false?

(A) The scope of parameters is the method in which they are defined.

(B) Static methods have no implicit parameter this.

(C) Two overloaded methods in the same class must have parameters with dif-
ferent names. _ '

(D) All parameters in Java are passed by value.

(E) Two different constructors in a given class can have the same number of
parameters. :

Multiple-Choice Questions on Classes and Objects 113

Questions 5-11 refer to the following Date class declaration:
- public class Date

, |

private int day;

private int month;

private int year;

public Date() //default constructor
{

b

public Date(int mo, int da, int yr) //constructor

{
b

public int moath() //returns month of Date
{

public int day() //returns day of Date
{

¥

public int year() //returns year of Date

{
}

//Returns String representation of Date as "m/d/y", e.g. 4/18/1985.
public String toString()

5. Which of the following correctly constructs a Date object in a client class?

(A} Date d = new (2, 13, 1947);
(B) Date d = new Date(2, 13, 1947);
(C) Date d;
d = new (2, 13, 1947);
(D) Date 4;

d = Date(2, 13, 1947);
{E) Date d = Date(2, 13, 1947); =

2 Classes and Objects

7. A client program creates a Date object as follows:

6. Which of the following will cause an error message? |

I Date d1 = new Date(8, 2, 1947);
Date d2 = 41;

Il Date d1 = null;
Date d2 = di;

IT Date 4 = null;
int x = d.year();

(A) Tonly

(B) Honly

(C) T only

(D) T and III only,
(B) L 11, and IIT

Date d = new Date(1l, 13, 2002);

Which of the following subsequent code segments will cause an error?
(A) String s = d.toString{);

(B) int x = d.day();

(C) Date e = d;

(D) Date e = new Date(1, 13, 2002);

(E) int y = d.year;

8. Consider the implementation of awrite () method that is added to the Date class:

/** Write the date in the form m/d/y, for example 2/17/1948. */
public void write() ' ‘ 3
{ E 5

/* implementation code */
} 4

Which of the following could be used as /* implementation code */?

I System.out.println{month + "/" + day + "/" + year);

I System.out.println(month() + "/ + day() + "/" + year(});
IOI System.out.println(this);
(A) Lonly B
(B} Tonly E
(C) I only

(D) M and M only
(E) LI, and Il

Multiple-Choice Questions on Classes and Objects 115

. Here is a client program that uses Date objects:

public class Birthday3tuff

{
public static Date findBirthdate()
{
/* code to get birthDate %/
return birthDate;
}
public static void main(String(] args)
{
Date d = findBirthdate();
}
b

Which of the following 1s a correct replacement for
./* code to get birthDate */?

I System.out.println("Enter birthdate: mo, day, yr: ");

int m = I0.readInt{(); //read user input
int d = I0.readInt(); //read user input
int y = I0.readInt(); //read user input

Date birtaDate = new Date(m, d, y);

II System.out.println("Enter birthdate: mo, day, yr: "):

int birthDate.month() = I0.readInt(); //read user input
int birthDate.day() = I0.readInt(); //read user input
int birthDate.year() = I0.readInt(}; //read user input

Date birthDate = new Date(birthDate.month(), birthDate.day(),
birthDate.year{)});

IIT System.out.printla("Enter birthdate: mo, day, yr: "):

int birthDate.month = I0.readInt(); //read user input
int birthDate.day = I0.readInt(); //read user input
int birthDate.year = I0.readInt{); //read user input

Date birthDate = new Date(birthDate.month, birthDate.day,
birthDate.year);

(A} Tonly
(B) M only
(C) Il only
(D) TandII only
(E) Tand Il only

116 Chapter2 Classes and Objects

10. A method in a client program for the Date class has this declaration:
Date di1 = new Date(mo, da, yr);

where mo, da, and yr are previously defined integer variables. The same method
now creates a second Date object d2 that is an exact copy of the object d1 refers
to. Which of the following code segments will zot do this correctly?

1 Date d2 = di;
Il Date d2 = new Date(mo, da, yr); '
I Date d2 = new Date(dl.month(), di.day(), dl.year());
(A) Ionly
(B) Uonly
(C) I only

(D) T and Il only
(E) L I, and ITT

11. The Date class is modified by adding the following mutator method:
public void addYears(int n) //add n years to date
Here is part of a poorly coded client program that uses the Date class:

public static void addCentury(Date recent, Date old)

{ ’
old.addYears(100); - 3
recent = old; »

by 3

public static void mein(String[] args) :

{

Date coldDate = new Date(l, 13, 1900);
Date recentDate = null;
addCentury(recentDate, oldDate);

}

Which will be true after executing this code?
(A) A NullPointerExceptionisthrown.
(B) The oldDate object remains unchanged.
(C) recentDateis a null reference.
(D) recentDate refers to the same object as oldDate. .
(E) recentDate refers to a separate object whose contents are the same as those
of oldbate.

Muttiple-Choice Questions on Classes and Objects 117

12. Here are the private instance variables for a Frog object:

public class Frog
{

private String species;

private int age;

private double weight;

private Position position; //position (x,y) in pond
private boolean amAlive;

Which of the following methods in the Frog class is the best candidate for béing
a static method?

(A) swim //frog swims to new position in pond

(B) getPondTemperature //returns temperature of pond

C) eat //frog eats and gains weight

g
(D) getWeight //returns weight of frog .
(E) die _ //frog dies with some probability based

//on frog’s age and pond temperature

3. Whart output will be produced by this program?

public class Mystery

{
public static void strangeMethod(int x, int y)
{
X +=1y;
¥ *= X;
System.out.printla(x + " " + y);
}
public static void main(String[} args)
{
int a =6, b =_3;
strangeMethod(a, b);
System.out.println(a + " " + b);
}
} Il
(A) 36
9
(B) 28
2
(C) 9 27
9 27 :
®) 63
L g 27 "
(E) 9 27

’

118 Chapter 2. Classes and Objects

Questions 14-17 refer to the following definition of the Rational class: 15. Tt
SEY
public class Rational (4
{ ‘ : : i
private int numerator; Er
private int denominator; ; (C
/4% default constructor */ ‘ (F
Rational() <
* implementation not shown * 3
{/ p /3 3 16. He
/#% Constructs a Rational with numerator n and . b
* denominator 1. */ g
Rational (int n) k:
{ /* implementation not shown */ }
/%% Constructs a Rational with specified numerator and i]
* denominator. */ 5
. Rational (int numer, int denom) 5
{ /* implementation not shown */ }
/%% Qreturn numerator */ i
int numerator () g
{ /* implementation not shown %/ }]
/** Qreturn denominator */ Wh
int denominator() - o
{ /* implementation not shown */ } ‘ 4 b A
/#* Returns (this + r). Leaves this unchanged. i i s:
* @return this rational number plus r o (B}
i % @param r a rational number to be added to this Rational : 3 /
*/ ©
public Rational plus(Rational r) 4).
{ /* implementation not shown #/ } b f- 3
//8imilarly for times, minus, divide 3 (D)
/**% Ensures denominator > 0. */ :
private void fixSigns() 3 (E)i
{ /* implementation not shown */ } i 1 .
/%% Ensures lowest terms. */ , 1 ;
private void reduce() E 17 Ass
{ /* implementation not shown */ } : . i
1 ;

14. The method reduce () is not a public method because
(A) methods whose return type is void ¢annot be public.
(B) methods that change this cannot be public.
(C) the reduce() method is nét intended for use by clients of the Rational class
(D) the reduce() method is intended for use only by clients of the Ra-t:n.onal
class. [
_ (B) the reduce() method uses only the private datafields of the Rational clas

Ma}ltiple-Choice Questions on Classes and Objects 119

15. The constructors in the Rational class allow initialization of Rational objects in
several different ways. Which of the following will cause an error?
(A) Rational rl = new Rational();
(B) Rational r2 = ril;.
(C) Rational r3 = new Rational(2,-3);
(D) Rational r4 = new Rational(3.5);
(E) Rational r5 = new Ratiomal(10);

16. Here is the implementation code for the plus method:

/** Returns (this + r). Leaves this unchanged.
* @return this rational number plus r .
* @param r a rational number to be added to this Rational
®/
public Ratiomnal plus(Rational r)
{
fix8igns();
r.fixSigns();
int denom = denominateor * r.denominator:
int numer = numerator * r,denominator
+ r.numerator * denominator;
/* more code */

¥

Which of the following is a correct replacement for /* more code */?

(A) Rational rat{(numer, denom);
rat.reduce();
return rat;

(B) return new Rational (numer, denom);

(C) reduce();
Rational rat
return rat;

new Rational (numer, denom);

]

(D} Rational rat = new Rational{numer, denom);
Rational.reduce(};
return rat;

(E) Rational rat = new Rational(numer, denom);
rat.reduce();
return rat;

17. Assume these declarations:

Rational a = new Rational(};

Rational r = new Rational (numer, denom);

int n = value;

//numer, denom, and.value are valid integer values

1

Which of the following will cause a compile-time error?

(A) T = a.plus(x);
(B} 2 = r.plus(new Rational(n));
{(C) r = r.plus(r);
D) a = n.ptus(x);"
(E) r = r.plus(new Rational(n));

.
»

120 Chapter2 Classes and Objects

Questions 18-20 refer to the Temperature class shown below:

N public class Temperature
eE {
: private String scale; //valid values are "F" or "C"
private double degrees;

i?' /%% constructor with specified degrees and scale */
hE public Temperature(double tempDegrees, String tempScale)
{ /* implementation not shown */ }

RE /%% Mutator. Converts this Temperature to degrees Fahrenheit.
oy % Precondition: Temperature is a valid temperature

* in degrees Celsius.
{ % @return this temperature in degrees Fahrenheit

‘ public Temperature toFahrenheit ()
P { /* implementation not shown */ }

/%% Mutator. Converts this Temperature to degrees Celsius.
* DPrecondition: Temperature is a valid temperature

: ; * in degrees Fahrenheit.
% @return this temperature in degrees Celsius
*/

: public Temperature toCelsius()
{ /* implementation not shown */ }

/#* Mutator.
* @param amt the number of degrees to raise this temperature

% @return this temperature raised by amt degrees
*/

public Temperature raise(double amt)

{ /* implementation not shown */ }

/#* Mutator. '
* @param amt the number of degrees to lower this temperature

* Q@return this temperature lowered by amt degrees
*/

public Temperature lower(double amt)

{ /* implementation not shown */ }

/#% Q@param tempDegrees the number of degrees
* @Qparam tempScale the temperature scale
% @return true if tempDegrees is a valid temperature
* in the given temperature scale, false otherwise
*/ ’
public static beolean isValidTemp{double tempDegrees,
String tempScale)
{ /* implementation not shown */ }

. s
//0ther methods are not shown.

Multiple-Choice Questions on Classes and Objects 121

Temperature t1 = new Temperature(40, "C");
Temperature t2 = t1;

. Temperature t3 = +2.lower{20);

" Temperature t4 = tl.toFahrenheit();

1§

hich statement is true following execution of this segment?

A} t1,t2,1t3, and t4 all represent the identical temperature, in degrees Celsius.

B) t1,t2, t3, and 4 all represent the identical temperature, in degrees Fahren-

heit. ‘

) t4 represents a Fahrenheit temperature, while t1, £2, and 3 all represent
 degrees Celsius. _.

(D) t1and t2 refer to the same Temperature object; t3 refers to a Temperature
. v-object that is 20 degrees lower than t1 and t2, while t4 refers to an object

that is t1 converted to Fahrenheit.

E) A NullPointerException was thrown.

Consider the following code:

public class TempTest
1

" public static void main(String[] args)

{
System.out.printin("Enter temperature scale: ");
String tempScale = I0.readString(}; //read user input
re System.out.println("Enter number of degrees: ");
double tempDegrees = I0.readDouble(); //read user inmput
/* code to construct a valid temperature from user input */
) :
hich is a correct replacement for /* code to construct... */?
re

I Temperature t = new Temperature (tempDegrees, tempScale);
if (!t.isValidTemp(tempDegrees,tempScale))
/* error message and exit program */

Il if (isValidTemp(tempDegrees,tempScale))

Temperature t = new Temperature(tempDegrees, tempScale);
else

/* error message and exit program */

if (Temperature.isValidTemp(tempDegrees,tempScale))
Temperature t = new Temperature(tempDegrees, tempScale);
else . ’

/% error message and exit program */

+

122 - Chapter2 Classes and Objects

20. The formula to convert degrees Celsius C to Fahrenheit F is 3 21

F=18C+32

For example, 30° C is equivalent to 86°F.

An inFahrenheit() accessor method is added to the Temperature class. Here 1s
its implementation:

/%% Precondition: The temperature is a valid temperature

* in degrees Celsius.
* Postcondition: F
= An equivalent temperature in degrees Fahrenheit has been A
* returned. ¢ N
* - Original temperature remains unchanged. .
* @return an equivalent temperature in degrees Fzhrenheit 1
x/ E
public Temperature inFahrenheit()
{ k.
Temperature result; E ’ -

/* more code */
return result;

3

Which of the following correctly replaces /* more code +/ so that the postcondi-
tion is achieved?

1

I result = new Temperature(degrees * 1.8 + 32, "F"); ' §

II result = new Temperature(degrees * 1.8, "F");
result = result.raise(32);

I

Il degrees *= 1.8;
this = this.raise(32);
result = new Temperature{degrees, "F");

(A) Ionly ;
(B) Honly 2
(C) I only 3
(D) Iand I only
(E) I, T, and 11

Multiple-Choice Questions on Classes and Objects 123

21. Consider this program:

public class CountStuff

{
public static void doSomething()
{
" int count = Q;
//code to do something - no screen output produced
count++;
}
public static void main(String[] args)
{
int count = 0;
System.out.printin("How many iterations?");
int n = I0.readInt(); //read user imnput
for (int i =1; i <= n; i++)
P
doSomething();
System.out.println(count) ;
} .
}

}
HmemmmWMehrnE&“mmwmeManmdﬁpmgmwdmﬂmmb
produce?

(A) o
0
0
(B) 1
2
3
(C) 3
3
3
D) =
7

7
where 7 is some undefined value.

(E) No output will be produced.

s

124 Chapter 2 Classes and Objects

22. This question refers to the following class:

public class IntObject
{

private int num;

public IntObject() //default constructor
{ oum = 0; }

public IntObject(int m) //constructor
{ num = n; }

public veoid increment() //increment by 1
{ num++; }

}
Here is a client program that uses this class:

public class IntObjectTest
{
public static IntObject someMethod (IntObject obj)
{ :
IntObject ans = obj;
ans.increment () ;
return ans;

}

public static void main(Stringl] args)

{

new IntObject(2);
IntObject y = new IntObject(7);
IntObject a = ¥;

x = someMethod(y);

a = someMethod(x);

IntObject x

1t

}

Just before exiting this program, what aré the object values of x, y, and a, respe«
tively?

(A) 9,9,9

(B) 2,9,9

(C) 2,8,9

(D) 3,8,8

(E) 7,8,9

Multiple-Choice Questions on Classes and Objects 125

public class Tester

{
public void someMethod(int a, int b)
{ .
int temp = a;
a = b;
b = temp;
b
}
public class TesterMain
{
public static void main(String[] args)
{
int x = 6, ¥y = 8;
Tester tester = new Tester();
tester.someMethod(x, y);
3
} .

Just before the end of execution of this program, what are the values of x, y, and
temp, respectively? ‘
. (A) 6,8,86
(B) 8,8,6
(C) s, 8, 7, where 7 means undefined
D) 8,8, 7, where ? means undefined
(E) 8,6,8

::Chapter 2 Classes and Objects

N N

D 9. A 17. D
B 10. A 18. B
C 1. C 19. C
C 2. B 20. D
B 13. E 21. A
C 14. C 22. A
E 15. D 23. C
E 16, E. |

(D) There are just two constructors. Constructors are recognizable by having
the same name as the class, and no return type.

(B) Each of the private instance variables should be assigned the value of the
matching parameter. Choice B is the only choice that does this. Choice D con-
fuses the order of the assignment statements. Choice A gives the code for the
defanlt constructor, ignoring the parameters. Choice C would be correct if it
were resetTime(h, m, s). As written, it doesn’t assign the parameter values b,
m, and s to hrs, mins, and secs. Choice E is wrong because the keyword new
should be used to create a new object, not to implement the constructor!

(C) Replacement I will automatically print time t in the required form since a

toString method was defined for the Time class. Replacement I is wrong because

it doesn’t refer to the parameter, t, of the method. Replacement I is wrong
because a client program may not access private data of the class.

(C) The parameter names can be the same—the signatures must be different. For
example,

public void print(int x) //prints x
public void print(double x) //prints x

The signatures (method name plus parameter types) here are print (int) and
print (double), respectively. The parameter name x is irrelevant. Choice A is
true: All Jocal variables and parameters go out of scope (are erased) when the
method is exited. Choice B is true: Static methods apply to the whole class.
Only instance methods have an implicit this parameter. Choice D is true even
for object parameters: Their references are passed by value. Note that choice
E is true because it’s possible to haye two different constructors with different
signatures but the same number of parameters (e.g., one for an int argument and
one for a double).

. (B) Constructing an object requires the keyword new and a constructor of the

Date class, Eliminate choices D and E since they omit new. The class name Date

should appear on the right-hand side of the assignment statement, immediately »

following the keyword new. This eliminates choices A and C.

1

11

12,

13.

Answers Explained 127

6. (C) Segment III will cause a NullPointerExceptionto be thrown since d is a null
reference. You cannot invoke a method for a null reference. Segment II has the
effect of assigning null to both d1 and d2—obscure but not incorrect. Segment I
creates the object reference d1 and then declares a second reference d2 that refers

to the same object as d1.
7. (E) A client program cannot access a private instance variable.

8. (E) All are correct. Since write() is a Date instance method, it is OK to use the
private data members in its implementation code. Segment III prints this, the
current Date object. This usage is correct since write () is part of the Date class.
The toString() method guarantees that the date will be printed in the required
- format (see p. 175).
9. (A) The idea here is to read in three separate variables for month, day, and year
“and then to construct the required date using new and the Date class constructor
with three parameters. Code segment IT won’t work because month (), day (), and
+-year () are accessor methods that access existing values and may not be used to
~.read new values into bDate. Segment IT¥ is wrong because it tries to access private
instance variables from a client program.

(A) Segment I will not create a second object. It will simply cause d2 to refer to
the same object as a1, which is not what was required. The keyword new must be
used to create a new object.

. (C) WhenrecentDateis declared inmain (), its value is null. Recall that a method
" is not able to replace an object reference, so recentDate remains null. Note that
the intent of the program is to change recentDate to refer to the updated o1dDate
object. The code, however, doesn’t do this. Choice A is false: No methods are
'~ invoked with a null reference. Choice B is false because addYears () is a mutator
method. Even though a method doesn’t change the address of its object parame-
ter, it can change the contents of the object, which is what happens here. Choices
D and E are wrong because the addCentury (O method cannot change the value of
_its recentDate argument,
(B) The method getPondTemperature is the only method that applies to more
than one frog. It should therefore be static. All of the other methods relate
directly to one particular Frog object. So f.swim(), £.die(), f.getWeight (),
and f.eat () are all reasonable methods for a single instance £ of a Frog. On
the other hand, it doesn’t make sense to say £ . getPondTemperature (). It makes
-more sense to say Frog.getPondTemperature (), since the same value will apply
to all frogs in the class.

3. (E) Here are the memory slots at the start of strangeMethod(a, b):
a b

6]
X | ¥

[6]

Before exiting strangeMethod(a, b):

TR CEHTUTT L TUpTm M smm T e
o .. e

L

R SR TR et

128 Chapter2 Classes and Objects

14.

15.

1é.

17.

18.

a b
[¢]
X ¥
5]

Note that 9 27 is output before exiting. After exiting strangelethod(a, b, th
memory slots are

a b,
[¢]
The next step outputs 6 3.

(C) The reduce() method will be used only in the implementation of the i
stance methods of the Rational class.

(D) None of the constructors in the Rational class takes a real-valued param
ter. Thus, the real-valued parameter in choice D will need to be converted to a
integer. Since in general truncating a real value to an integer involves a loss
precision, it is not done automatically—you have to do it explicitly with a cas
Omitting the cast causes 2 compile-time error.

(E) A new Rational object must be created using the newly calculated nume
and denom. Then it must be reduced before being returned. Choice A is wror
because it doesn’t correctly create the new object. Choice B returns a correct]
constructed object, but one that has not been reduced. Choice C reduces tk
current object, this, instead of the new object, rat. Choice D is wrong becau:
it invokes reduce () for the Rational class instead of the specific rat object.

(D) The plus method of the Rational class can only be invoked by Ration:
objects. Since n is an int, the statement in choice D will cause an error.

(B) This is an example of aliasing. The keyword new is used just once, whic
means that just one object is constructed. Here are the memory slots after eac
declaration:

After declaration for t1 After declaration for t2

Answers Explained 129

tl
ti ~
£2 IR S+
DRSS SRS BT o N TP
T seme [w | oeeme [F]
£3 + degrees. | 20 |. | degrees | o8
-1 ‘ ¢S
Py
After declaration for t3 ‘ After declaration for t4

{C) Notice that isValidTemp is a static method for the Temperature class, which
means that it cannot be invoked with a Temperature object. Thus, segment I is
incorrect: t.1sValidTemp is wrong. Segment II fails because isValidTemp is not
a method of the TempTest class. It therefore must be invoked with its class name,
which is what happens (correctly) in segment III: Temperature. isValidTemp.

. (D) A new Temperature object must be constructed to prevent the current
Temperature from being changed. Segment I, which applies the conversion for-
mula directly to degrees, is the best way to do this. Segment II, while not the
best algorithm, does work. The statement :

result = result.raise(32);

has the effect of raising the result temperature by 32 degrees, and completing
the conversion. Segment III fails because

degrees #= 1.8;
alters the degrees instance variable of the current object, as does
this = this.raise(32);

To be correct, these operations must be applied to the result object.

(A) This is a question about the scope of variables. The scope of the count
variable that is declared in main() extends up to the closing brace of main(). In
doSomething (), count is a local variable. After the method call in the for loop,
the Jocal vartable count goes out of scope, and the value that’s being printed is
the value of the count in main(), which is unchanged from 0.

. (A) Here are the memory slots before the first someMethod call:

_I;thPJ?cfc, 1 | IntObject :

Just before exiting x = someMethod (y):

130 Chaptér2 Classes and Objects

After exiting
x = someMethod(y);

x has been reassigned, so the object with num = 2 has been recycled:

After exiting a = someMethod(x}:

e

23. (C) Recall that when primitive types are passed as parameters, copies are made
of the actual arguments. All manipulations in the method are performed on the
copies, and the arguments remain unchanged. Thus x and y retain their values of
6 and &. The local variable temp goes out of scope as soon as someMethod is exited
and is therefore undefined just before the end of execution of the program.

e

