Diagnostic Chart for Practice Exam 45

S T T i ey
ANSWER KEY (Sectlon l) : , -
SR R AT R e I B 3 L T s e R e T R %
|
. ’]
. D 15. E c 29. A =
B 6.C 30. A’ E
. C 17. A 3L A e
‘ ' (=
A 18. E 32. C
. B 19. A 33. E
E 20. E 34. D
B 21. B 35. E
C 22. E 36. C
. B 23. D 37. B
. A 24. E 38. A
1. C 25. A 39, E
. B 26. C 40. D
A 27. D
A 28. B

ach multiple—choice question has a complete explanation (p- 47).

- The following table relates each question to sections that you should review. For
any given questlon, the topic(s) in the chart represent the concept(s) tested in the ques-
on. These topics are explained on the corresponding page(s) in the chart and should
rovide further insight into answering that question.

- | y;
46 Practice Exam _ ‘ \ {

Inheritance

-
(il 1
&= 2 Implementing classes 212
= 3 Storage of integers . 61
= 4 Constructors 95
% 5 The toString method 176
g ClassCastException 142
=] 6 Integer .MIN_VALUEand Integer MAX_VALUE 61
7 for loop) . 71
8 Program specification 208
9 Recursion 291
10 Boolean expressions 65
11 . Hexadecimal 62
12 TndexOutOfBoundsException for Arraylist 244
13 Passing pararneters 236
14 Passing parameters 236
15 Abstract classes 142
16 Subclass constructors and super keyword 135
17 Polymorphism 138
18 swap method 237
19 Rounding real numbers 61
20 Recursion . 293
21 Selection and insertion sort) 324
22 Subclass method calls 141
23 Compound boolean expressions 65
24 String class equals method 178
String class substring method 180
25 Round-off error 62
26 Array processing : 235
27 Assertions about algorithms 219
Binary search 329
28 Binary search 329
29 - Random integers) 185
30 String class substring method 180
31 Two-dimensional arrays 249
32 Relationships between classes 216
33 Array of objects 239 .
ArraylList 244
34 NullPointerException 103
35 Traversing an array 235
. The if statement 69
36 Processing a 2-D array 251
Mirror images 357
37 Using ArrayList ' 245
38 Using Arraylist 245
Using super in a subclass 139

One-dimensional arrays 233 |

Answers Explained 47

‘Section |

B 1. (D) Constructors are never inherited, If a subclass has no constructor, the de-
s fault constructor for the superclass is generated. If the superclass does not have a
default constructor, a compile-time error will occur. '

2. (B) The programmer is using an object-oriented approach to writing the program
and plans to test the simplest classes first. This is bottom-up development. In top-
down development (choice A), high-level classes are broken down into subsidiary
classes: Procedural abstraction (choice C) is the use of helper methods in a class.
Information hiding (choice D) is restriction of access to private data and methods
in a class. Choice E is wrong because a driver program is one whose sole purpose
is to test a given method or class. Implementing the simplest classes first may
involve driver programs that test the various methods, but the overall plan is not
an example of a driver program. ‘

3. (C) 8 bits (1 byte) are required to represent the values from 0 to 255. The base 2
number 11111111 represents 14244+ 8+ 16+ 32+ 64 - 128 = 255, Since there
are 3 such values in an RGB representation, (8)(3) = 24 bits are needed.

4. (A) In the constructor, the private instance variables suit and value must be
initialized to the appropriate parameter values. Choice A is the only choice that

_ does this. . _ ‘
. (B) Implefentation I invokes the toString method of the Card class: Implemen-

tation I fails because there is no default toString method for arrays. Implemen-
tation IIT will cause a ClassCastException: You cannot cast a Card to a String,.

. (E) Since the values ini arr cannot be greater than Integer MAX_VALUE, the test
in the while loop will be true at least once and will lead to the smallest element
being stored in min. (If all the elements of the array are Integer.MAX_VALUE, the

- code still works.) Similarly, initializing min to arr [0]; the first element in the
array, ensures that all elements in arr will be examined and the smallest will be
found. Choice I, Integer . MIN_VALUE, fails because the test in the lo op will always
be false!' There is no array element that will be less than the smallest possible
integer. The method will (incorrectly) return Integer.MIN_VALUE.

- (B) The maximum number will be achieved if /+ test */ is true in each pass
through the loop. So the question boils down to: How many times is the loop
_executed? Try one odd and one even value of n: '

Hon=7, i=0,2,4,6 Ans =4
Ifn=8, i1i=0,2,4,6 . Ans=4

Notice that choice B is the only espression that works for bothn =7 and n = 8.

+ (C) Here is one of the golden rules of programming: Don’t start planning the
program until every aspect of the specification is crystal clear. A programmer
should never make unilateral decisions about ambiguities in a specification.

- (B) When x <y, a récursive call is made to whatIsIt(xz-1, y). If x decreases
at every recursive call, there is no way to reach a successful base case. Thus, the
method never terminates and eventually exhausts all available memory.

48 Practice Exam

10. (A) The expression ! (max != a[il) is equivalent to max == a(il, so the given

11.

12.

13.

14.

expression is equivalent to alil == max || max == a[i], which is equivalent to
afi] == max.

(C) A base-b number can be represented with b characters. Thus, base-2 uses
0,1 for example, and base-10 uses 0,1,...,8,9. A hexadecimal (base-16) number
is represented with 16 characters: 0,1,...,8,9,A,B,C,D,E,F, where A=10,B =
11,...,F =15. The largest two-place base-2 integer is

11=1x2°+1x2'=3
The largest two-place base-10 ‘integer is
99 =9 x 10°+9 x 10!
The largest two-place base-16 integer is
FER=Fx 16’ +F x 16!
The character F represents 15, sO
FF=15x%16°+15 x 16! =255

Here’s another way to think about this problem: Each hex digit is 4 binary digits
(bits), since 16 = 2%, Therefore a two-digit hex number is 8 bits. The largest
base-10 number that can be represented with 8 bits is 28 — 1 =255,

(B) The index range for ArrayList is 0 < index < size()-1. Thus, for methods
get, remove, and set, the last in-bounds index is size () ~1. The one exception is
the add method—to add an element to the end of the list takes an index parameter
list.size().

A) The array will not be changed by the increment method. - Here are the
memory slots:

Before the first call, increment (3): Just after the first call:
testArray testArray
~—>|314]65 | ~+—>|3(4(5
n
3
Just before exiting increment (3): Just after exiting increment (3):
testirray . testA:'r.'ray
~+—>|314|5 ——>» {3415
. ‘
4

The same analysis applies to the method calls increment (4) and increment (6).

(A) As in the previous question, the array will not be changed by the increment

- method. Nor will the local variable element! What will be changed by increment

is the copy of the parameter during each pass through the loop.

© 15,

16.

17.

18.

19,

20.

21

22.

.
-
L

E

Bvm 2 BT R R

W T M ke PRl -

< O oS b LT

'

Answers Explained 49

5. (B) Subclasses of Quadrilateral may also be abstract, in which case they will
inherit perimeter and/or area as abstract methods,

. (C) Segment I starts correctly but fails to initialize the additional private vari-
ables of the Rectangle class. - Segment II is wrong because by using super
.with theTopLeft and theBotRight, it implies that these values are used in the
Quadrilateral superclass. This is false—there isn’t even a constructor with three
_arguments in the superclass.

Diagnostic Test

(A) During execution the appropnate area method for each quad in quadList
.will be determined (polymorphism or dynamic bindirig).

18 °(E) The algorithm has three steps:

1. Store the objectat i in temp,
2. Place at location 1 the object at j.
3, Place temp at location j.

+ This has the effect of swapping the objects at 1 and j. Notice that choices B and
' C, while incomplete, are not incorrect. The question, however, asks for the best
! descnptlon of the postcondltlon, which is found in choice E.

(A) Subtracting 0.5 from a negative real number and then truncatmg it produces
the number correctly rounded to the nearest integer. Note that casting to an int
truncates a real number. The expression in choice B is correct for rounding a
positive real number. Choice C won’t round correctly. For example, —3.7 will be
rounded to —3 instead of —4. Choices D and E don’t make sense. Why cast to
double if you’re rounding to the nearest integer?

. (B) The method call whatsIt(347) puts on the stack System.out.print (7).
The method call whatsTt(34) puts on the stack System. out. print(4).

The method call whatsIt(3) is a base case and writes out 3,

Now the stack is popped from the top, and the 3 that was printed is followed by
‘4, then 7. The result is 347.

(B) Recall that insertion sort takes each element in turn and (a) finds its insertion
~ point and (b) moves elements to insért that element in its correct place. Thus, if
the array 1s in reverse sorted order, the insertion point will always be at the front
. of the array, leading to the maximum number of comparisons and data moves—
:very inefficient. Therefore chojces A, C, and E are false.
Selection sort finds the smallest element in the array and swaps it with a[0]
~and then finds the smallest element in the rest of the array and swaps it with
~al1], and so on. Thus, the same number of comparisons and moves will occur,
irrespective of the original arrangement of elements in the array. So choice B is
-true, and choice D is false.

(E) Method call I fails because ClassOne does not have access to the methods of
its subclass. Method call II fails because 2 needs to be cast to ClassTwo to be able
to access methodTwo. Thus, the following would be OK:

{(ClassTwo) c2).methodTwo O ;

» Method call TIT works because ClassTwo inherits methodOne from its superclass,
‘ClassOne.

(1)) Notice that in the original code, if is 1, k is incremented by 1, and if n is 4,
k is incremented by 4. This is equivalent to saying “if nis 1 or 4, k is incremented

)
Ha]
[xh]

E~t
%]

=
[ip]
(]
=
cn
3]

» g

ma|

50 Practice Exam

24,

25,

26.

27.

by n.”

() Segment I will throw a NullPointerException when s.equals... isin-
voked, because s is a null reference. Segment III looks suspect, but when
the startIndex parameter of the substring method equals s.length(), the
value returned is the empty string. If, however, startIndex > s.length(), a
StringIndexOutOfBoundsException is thrown.

(A) Since results of calculations with floating-point numbers are not always rep- -
resented exactly (round-off error), direct tests for equality are not reliable. Instead
of the boolean expression d == ¢, a test should be done to check whether the dif-
ference of d and ¢ is within some acceptable tolerance interval (see the Box on
comparing floating-point numbers, p. 65). '

(C) If arr has elements 2, 3, 5, the values of value are

2 //after initialization
2510 + 3 = 23 //when i =1
23%10 + 5 = 235 //when i = 2

(D) The point of the binary search algorithm is that the interval containing key

" is repeatedly narrowed down by splitting it in half. ‘For each iteration of the

28.

29.

30.

while loop, if key is in the list, axx [first] < key < arr[lastl. Note that (i)
the endpoints of the interval must be included, and (ii) key is not necessarily in

the list.

®)
first last mid almid]
After first iteration 0 13 6 50
After second iteration 7 13 10 220
After third iteration 7 9 8 101
After fourth iteration 9 9 9 205

(A) The data structure is an array, not an ArrayList, so you cannot use the add
method for inserting elements into the list. This eliminates choices B and D. The

. expression to return a random integer from 0 to k-1 inclusive is

{(int) (Math.random() * k)

Thus, to get integers from: 0 to 100 requires k to be 101, which eliminates choice
C. Choice E fails because it gets integers from 1 to 100.

(A) Suppose stri is strawberry and str2is cat. Then insert(stri, str2, 5)
will return the following pieces, concatenated:

strawy + cat + berry

Recall that s.substring(k, m) (a method of String) returns a substring of s
starting at position k and ending at position m-1. String stri must be split
into two parts, first and last. Then str2 will be inserted between them.
Since str2 is inserted starting at position 5 (the "b"), first = straw, namely
stri.substring(0,pos). (Start at 0 and take all the characters up to and includ-
ing location pos-1, namely 4.) Notice that last, the second substring of stri,
must start at the index for "b", which is pos, the index at which str2 was in-
serted. The expression stri.substring(pos) returns the substring of stri that
starts at pos and continues to the end of the string, which was required. Note

Answers Explained 51

hat-you don’t need any “special case” tests. In the cases whére str2 is inserted at
the front of str1 (i.¢,, pos is 0) or the back of str1 (i.c., pos is str1.length()),
the code for the general case Works

'(A) Method changeMatrix examines each element and changes it to its absolute
value if its row number equals its column number. The only two elements that
satisfy the condition r =='c are mat (0] (0] and mat [1] [1]. Thus, -1 is changed
to:1 and -4 is.changed to 4, resulting in the mgtrix in choice A.

Diagnostic Test

(©5 Com‘position is the has-a relationship. A PlayerGroup has-a Player (several
of them, in fact). Inheritanice, (choice D) is the is-# relationship, which doesn’t
pply here. None of the choices A, B, or E apply in this example: An interface
4 single class composed of only abstract methods (see p. 144); encapsulatlon is
he bundling together of data fields and operations into a single unit, a class. (see
'93); and PlayerCGroup and Player are clearly dependent on each. other since
ayerGroup contains.several Player objects (see p. 212).

(ﬁ) All of these data structures are reasonable. They all represent 20 bingo num-
in a convenient Wéy and provide easy mechanisms for crossing off numbers
d recognizing a winming card. Notice that data structure 11 provxdes a very
uick way of searchmg for a number on the card. For example, if 48 is called,

ingoCard (48] is inspected. If it is true, then it wds one of the 20 original num-
“hérs on the card and gets crossed out. If false, 48 was not on that player’s card.

ata structures I and IT require a linear search to find any given number that is
alled. (Note: There is no assumption that the array is sorted, which would allow
more efficient binary search,)

J) A NullPointerException is thrown whenever an attempt is made to invoke
method with an object that hasn’t been created with new. Choice A doesn’t
ake sense: To test the Caller constructor requires a statement of the form

Caller c = new Caller();

Choice B is wrong: A missing.return statement in a method triggers a comp1le~
time error. Choice C doesn’t make.sense: In the declaration of numbers, its de-
fault initialization is to nu11. Choice E is bizarre. Hopefully you ehmmated it
immediately!

(E) For each element in a, found is switched to true if that element js found
anywhere in b. Notice that for any element in a, if it is not found in b, the
method returns false. Thus, to return true, every element in a must also be

b. Notice that this doesn’t necessarily mean that a and b are permutations
of each other. For example, consider the counterexample of a=[1,1,2,3] and
=[1,2,2,31. Also, not every element in b needs to be in 2. For example, if
=[3,3,5] and b=(3,5,6], the method will return true.

C) In the example given, height = 3, height/2 = 1, and nuxCols = 3. Notice
hat in each pass through the loop, row has value 6, Wh1le col goes from 0 through
2 So here are the assignments:

e s
BaLEEL st A ot iy e

- mat{2] [0] = mat (0] o]
‘mat[2] [1] = mat[0] [1]
mat [2][2] = mat[0] (2]

I

rom this you should see that row 2 is being replaced by row o.

52 Practice Exam

37.

38.

39.

40.

(B) Eliminate choices D and E immediately, since assignment of new values in an
ArrayList is done with the set method, not get. Eliminate choice C since you
do not know that the TileBag class has a swap method. Choice A fails because it
replaces the element at position size before storing it. Choice B works because
the element at position index has been saved in temp.

(A) The size variable stores the number of unused tiles, which are in the tiles
fist from position 0 to position size. A random int is selected in this range,
giving the index of the Tile that will be swapped to the end of the unused part of
the tiles list. Note that the length of the tiles ArrayList stays constant. Each
execution of getNewTile decreases the “unused tiles” part of the list and increases
the “already used” part at the end of the list. In this way, both used and unused
tiles are stored.

(E) When pigeon.act () is called, the act method of Dove is called. (This is an
example of polymorphism.) The act method of Dove starts with super.act ()
which goes to the act method of Bird, the superclass. This prints £1y, then calls
makeNoise(). Using polymorphism, the makeNoise method in Dove is called,
which starts with super.makeNoise(), which prints chirp. Completing the
makeNoise method in Dove prints coo. Thus, so far we've printed 1y chirp
coo. But we haven’t completed Dove’s act method, which ends with printing out
waddle! The rule of thumb is: When super is used, find the method in the su-
perclass. But if that method calls a method that’s been overridden in the subclass,
go back there for the overridden method. You also mustn’t forget to check that
you've executed any pending lines of code in that superclass method!

(D) In Implementation 1, the first element assigned is prod{1], and it multi-
plies arr[1] by prod(0], which was initialized to 1. To fix this implementa-
tion, you need a statement preceding the loop, which correctly assigns pred[0]:
prod [0)=arr [0];

[

sinan
ze you -§
ause it 3
ecause 3

tiles j
range, 1
vart of
- Each ;
reases
nused

:189.11

tion 1l
(a) public static void reverseArray(int[] arr)
{
int mid = arr.length/2;
for (dnt i = 0; i < mid; i++)
{
int temp = arr[il;
arr(i] = arrfarr.length ~ i - 1];
arr{arr.length - i - 1] = temp;
3 ‘
3

(b} public void reverseAllRows()

for (imt[] row: mat)

act () , ArrayUtil.reverseArray (row);
1 calls
:aﬂed,a © Eublic void reverseMatrix()
g'Fhe;. reverseAllRows() ;"
chirp 3 int mid = mat,length/2;
\g out & for (int i = 0; i < mid; i++)
1€ SU- { '
class, 4 for (int col = 0; col < mat[0].length; col++)
¢ that .
E int temp = mat[i] [coll;

L mat[i] fcol]} = mat{mat.length - i - 1] [col];
nulti- 1 mat [mat.length - i ~ 1] [col] = temp;
enta- }
df0l:] i)

3 }
Alternative solution:
public void reverseMatrix()
{
reverseAllRows();
int mid = mat.length/2;
for (int i = 0; i < mid; i++)
C ,
int{] temp = mat(i];
mat[i] = mat(mat.length - i - 1];
mat[mat.length - i - 1] = temp;
}
}
. NOTE

e Parts (a) and the alternative solution in part (c) use the same algorithm,
swappmg the first and last elements, then the second and second last, etc.,
moving toward the middle. If there is an odd number of elements, the
middle element does not move. In part (a) the elements are integers. In
part (c) they are rows in the matrix.
In the first solution of part (c), start by reversing all rows. Then for each
‘column, swap the elements in the first and last rows, then the second and
second last, and so on, moving toward the middle.
The alternative solution in part (c) is more elegant. It is not, however, part
of the AP subset to replace one row of a matrix with a different array.

Answers Explained 53

54 Practice Exam

2. (a) public List<Integer> getBlankPositions()

{
List<Integer> posList = mew ArrayList<Integer>();
for (int i = 0; i < sentence.length(); i++)
{
if (sentence.substring(i, i + 1).equals(" ")
posList.add(i);
}
return poslist;

}
Alternatively (an inferior, unnecessarily complicated solutionl),

public List<Integer> getBlankPositions ()

{
List<Integer> poslist = new ArrayList<Integer>();
String s = sentence;
int diff = 0;
int index = s.indexQf(" ");
while (index >= 0)
{
posList.add(index + diff);
diff = sentence.length() - (s.substring(index + 1)) .length()
s = s.substring(index + 1};
index = s.index0f (" ");
}
return posList;
}
(b) public int countWords()
{
' return getBlankPositions(}.size() + 1;
} :

(c) public Stringl] getWordsO
{
List<Integer> posList = getBlankPositions(};
int numWords = counmtWords();
String[} wordArr = new String [numWords] ;
for (int i = 0; i < numWords; i++)

{
: if (i == 0)
{
if (posList.size() != 0)
wordArr[i]l = sentence.substring(0, posList.get(0));
else
wordAdrr[i] = sentence;
}
else if (i == posList.size())
wordArr[i] = sentence.substring(posList.get(i - 1)};
else
wordArr [i] = sentence.substring(posList.get(i - 1),
posList.get(i));
}

return wordArr;

Answers Explained -55

NOTE

e In part (a), it would also work to have the test
-’i'<_éenteﬁce.1ength() “1; '
in the for loop. But you don’t need the -1 because the [ast character is a
punctuation mark, not a blank.

o In the alternative part (2), you can’t just store the positions of index as
you loop over the sentence. Finding's.index0f (" ") will give a value
that is too small, because you are successively taking shorter substrings of
s. The local variable, aif#, represents the difference between the length
of the original sentence and the length of the current substring. This is
what must be added to the current value of index, so that you get the
position of the blank in the original sentence.

o Part (b) takes advantage of the precondition that there is one and only one
blank between words. This means that the number of words will always
be the number of blanks plus one. ,

» In part {c), you have to be careful when you get the first word. If there’s
only one word in the sentence, there are no blanks, which means posList
is empty, and you can’t use posList.get (0) (because that will throw an
IndexDuthBoundsExcept1onJ .

o Also in part (c), the second test deals with getting the last word in the
sentence. You have to distinguish between the cases of more than one
word in the sentence and exactly one word in the sentence.

Diagnostic Test

(2) public Player requestSlot(String playerName)

{
for (int i = 0; i < slots.length; i++)
{
if (slots[i] == null)
{
Player p = mew Player(playerName, i);
slots[i] = p;
return p;
}
}
waitinglist.add(playerName) ;
return null;
-+

{
‘ int i = p.getPlayerNumber{);
if (waitinglist.size() != 0)

{
slots[i] = new Player(waitingList.get(0), i);
waitinglist, remove(0);

}

else

{
slots[i] = null;

¥

return slots[il;

.
[{}
L

|
o

=
u
[=
[
€
g
=

Diagnostic Test

-

56 Practice Exam

o

NOTE

o In part (a), the last two lines of the method will be executed only if you
are still in the method, namely no available slot was found.

o In part (b), the final line will return either a new player, or aull if the
waiting list was empty.

4. (a) public void reset()
{
if (arm.isFacingRight ())
arm.changeDirection();
arm.moveForward (arm. getCurrentIndex());
arm.changeDirection();

1

(b) public int mostAcidic()
{
reset{);
- int minPH = Integer.MAX_VALUE, minIndex = 0;
int index = 0;
while (index < solutions.size())

{

Solution s = solutions.get(index);
if (s.getPH() < minPH)
{
ninPH = s.getPHE();
minIndex = index;
}
indext++;
}
if (minPH >= 7)
return -1;
‘else
{
arm.moveForward (minIndex);
return minIndex;

NOTE

o Inpart (b), a foreach loop won’t work, because you need to save an index. :

o Inpart (b), notice that resetting the mechanical arm causes the arm to face

_ right. ‘]

o In part (b), you could initialize minPf to any integer greater than or equal
to 7 for this algorithm to work. You just must be careful not to set it to
an “acidic” number, namely 1 to 6.

