Polar Coordinates/Equations

r = directed distance from pole

 $y = r \sin \theta$ $r^2 = x^2 + y^2$

 $\tan \theta = \frac{y}{x}$

 θ = direction angle

 $(r, \theta) = (r, \theta \pm 2n\pi) \text{ or } (-r, \theta \pm (2n+1)\pi)$

(1) Plot the following points:

$$(a)\left(3,\frac{\pi}{2}\right)$$

(b)
$$\left(-2, \frac{11\pi}{6}\right)$$

(a)
$$\left(3, \frac{\pi}{2}\right)$$
 (b) $\left(-2, \frac{11\pi}{6}\right)$ (c) $\left(-3, -\frac{7\pi}{4}\right)$

(2) Give two sets of coordinates that are equivalent for each (r > 0, r < 0):

(a)
$$\left(8, \frac{5\pi}{6} \right)$$
 (b) $\left(-2, \pi \right)$

(b)
$$(-2,\pi)$$

(c)
$$\left(-1, -\frac{3\pi}{4}\right)$$

(3) Find the rectangular coordinates for each

(a)
$$\left(8, \frac{7\pi}{6}\right)$$

(b)
$$\left(-6, \frac{3\pi}{2}\right)$$

(b)
$$\left(-6, \frac{3\pi}{2}\right)$$
 (c) $\left(-1, -\frac{5\pi}{3}\right)$

(4) Convert the following to polar coordinates: (b) (0, -8) (c) $(-1, -\sqrt{3})$

(a)
$$(-4,4)$$

(c)
$$(-1,-\sqrt{3})$$

(d)
$$(-\sqrt{6}, -\sqrt{2})$$

(5) Change each to a rectangular equation:

(a)
$$r = 5$$

(b)
$$\theta = \frac{5\pi}{4}$$

(c)
$$r = 5 \cos 6$$

(c)
$$r = 5 \cos \theta$$

(d) $r \sin^2 \theta = 3 \cos \theta$

(e)
$$r = 1 + \sin \theta$$

$$(f) r = \frac{2}{1 + \cos \theta}$$

(6) Convert each to a polar equation: (a) $x^2 + y^2 = 49$

(a)
$$x^2 + y^2 = 49$$

$$(a) \times \cdot y =$$

$$(b) y = -4$$

(b)
$$y = -4$$

(c) $x^3 = 4y^2$

$$(a) = v$$

(a)
$$y = x$$

(e)
$$x^2 + y^2 - 4x + 6y = 0$$

(f) $x^2 - y^2 = 1$

$$(f) x^{2} - y^{2} = 1$$

- (7) Convert each to a rectangular equation
- (a) $x = 4t^2$, $y = 8t^3$
- (b) $x = 2 \cos t$, $y = 3 \sin t$ $0 \le t^2 \le 2\pi$
- (c) $x = \cos t$, $y = \cos 2t$
- (d) $x = sin^2 t$, $y = sin^4 t$
- (e) $x = \frac{3}{\sqrt{3-t}}$, $y = \frac{t-3}{t}$

- rectangular equation. (8) Find the parametric equation for the line with the given properties. Convert each to a
- (a) slope = $\frac{1}{2}$, passes through (4, -1)
- (b) Passes through (6,7) and (7,8)
- (9) What is the shape of the polar equation $r = 2 + 2 \sin \theta$

10) What is the maximum value for r in the equation $r = 6 (4-5 \sin \theta)$